Node Postprocessor#

Concept#

Node postprocessors are a set of modules that take a set of nodes, and apply some kind of transformation or filtering before returning them.

In LlamaIndex, node postprocessors are most commonly applied within a query engine, after the node retrieval step and before the response synthesis step.

LlamaIndex offers several node postprocessors for immediate use, while also providing a simple API for adding your own custom postprocessors.

Tip

Confused about where node postprocessor fits in the pipeline? Read about high-level concepts

Usage Pattern#

An example of using a node postprocessors is below:

from llama_index.postprocessor import (
    SimilarityPostprocessor,
    CohereRerank,
)
from llama_index.schema import Node, NodeWithScore

nodes = [
    NodeWithScore(node=Node(text="text1"), score=0.7),
    NodeWithScore(node=Node(text="text2"), score=0.8),
]

# similarity postprocessor: filter nodes below 0.75 similarity score
processor = SimilarityPostprocessor(similarity_cutoff=0.75)
filtered_nodes = processor.postprocess_nodes(nodes)

# cohere rerank: rerank nodes given query using trained model
reranker = CohereRerank(api_key="<COHERE_API_KEY>", top_n=2)
reranker.postprocess_nodes(nodes, query_str="<user_query>")

Note that postprocess_nodes can take in either a query_str or query_bundle (QueryBundle), though not both.

Usage Pattern#

Most commonly, node-postprocessors will be used in a query engine, where they are applied to the nodes returned from a retriever, and before the response synthesis step.

Using with a Query Engine#

from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.postprocessor import TimeWeightedPostprocessor

documents = SimpleDirectoryReader("./data").load_data()

index = VectorStoreIndex.from_documents(documents)

query_engine = index.as_query_engine(
    node_postprocessors=[
        TimeWeightedPostprocessor(
            time_decay=0.5, time_access_refresh=False, top_k=1
        )
    ]
)

# all node post-processors will be applied during each query
response = query_engine.query("query string")

Using with Retrieved Nodes#

Or used as a standalone object for filtering retrieved nodes:

from llama_index.postprocessor import SimilarityPostprocessor

nodes = index.as_retriever().retrieve("test query str")

# filter nodes below 0.75 similarity score
processor = SimilarityPostprocessor(similarity_cutoff=0.75)
filtered_nodes = processor.postprocess_nodes(nodes)

Using with your own nodes#

As you may have noticed, the postprocessors take NodeWithScore objects as inputs, which is just a wrapper class with a Node and a score value.

from llama_index.postprocessor import SimilarityPostprocessor
from llama_index.schema import Node, NodeWithScore

nodes = [
    NodeWithScore(node=Node(text="text"), score=0.7),
    NodeWithScore(node=Node(text="text"), score=0.8),
]

# filter nodes below 0.75 similarity score
processor = SimilarityPostprocessor(similarity_cutoff=0.75)
filtered_nodes = processor.postprocess_nodes(nodes)

Custom Node PostProcessor#

The base class is BaseNodePostprocessor, and the API interface is very simple:

class BaseNodePostprocessor:
    """Node postprocessor."""

    @abstractmethod
    def _postprocess_nodes(
        self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle]
    ) -> List[NodeWithScore]:
        """Postprocess nodes."""

A dummy node-postprocessor can be implemented in just a few lines of code:

from llama_index import QueryBundle
from llama_index.postprocessor import BaseNodePostprocessor
from llama_index.schema import NodeWithScore


class DummyNodePostprocessor(BaseNodePostprocessor):
    def _postprocess_nodes(
        self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle]
    ) -> List[NodeWithScore]:
        # subtracts 1 from the score
        for n in nodes:
            n.score -= 1

        return nodes