Rockset Vector Store#
As a real-time search and analytics database, Rockset uses indexing to deliver scalable and performant personalization, product search, semantic search, chatbot applications, and more. Since Rockset is purpose-built for real-time, you can build these responsive applications on constantly updating, streaming data. By integrating Rockset with LlamaIndex, you can easily use LLMs on your own real-time data for production-ready vector search applications.
We’ll walk through a demonstration of how to use Rockset as a vector store in LlamaIndex.
Tutorial#
In this example, we’ll use OpenAI’s text-embedding-ada-002
model to generate embeddings and Rockset as vector store to store embeddings.
We’ll ingest text from a file and ask questions about the content.
Setting Up Your Environment#
Create a collection from the Rockset console with the Write API as your source. Name your collection
llamaindex_demo
. Configure the following ingest transformation withVECTOR_ENFORCE
to define your embeddings field and take advantage of performance and storage optimizations:
SELECT
_input.* EXCEPT(_meta),
VECTOR_ENFORCE(
_input.embedding,
1536,
'float'
) as embedding
FROM _input
Create an API key from the Rockset console and set the
ROCKSET_API_KEY
environment variable. Find your API server here and set theROCKSET_API_SERVER
environment variable. Set theOPENAI_API_KEY
environment variable.Install the dependencies.
pip3 install llama_index rockset
LlamaIndex allows you to ingest data from a variety of sources. For this example, we’ll read from a text file named
constitution.txt
, which is a transcript of the American Constitution, found here.
Data ingestion#
Use LlamaIndex’s SimpleDirectoryReader
class to convert the text file to a list of Document
objects.
from llama_index import SimpleDirectoryReader
docs = SimpleDirectoryReader(
input_files=["{path to}/consitution.txt"]
).load_data()
Instantiate the LLM and service context.
from llama_index import ServiceContext
from llama_index.llms import OpenAI
llm = OpenAI(temperature=0.8, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=llm)
Instantiate the vector store and storage context.
from llama_index import StorageContext
from llama_index.vector_stores import RocksetVectorStore
vector_store = RocksetVectorStore(collection="llamaindex_demo")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
Add documents to the llamaindex_demo
collection and create an index.
from llama_index import VectorStoreIndex
index = VectorStoreIndex.from_documents(
docs, storage_context=storage_context, service_context=service_context
)
Querying#
Ask a question about your document and generate a response.
response = index.as_query_engine(service_context=service_context).query(
"What is the duty of the president?"
)
print(str(response))
Run the program.
$ python3 main.py
The duty of the president is to faithfully execute the Office of President of the United States, preserve, protect and defend the Constitution of the United States, serve as the Commander in Chief of the Army and Navy, grant reprieves and pardons for offenses against the United States (except in cases of impeachment), make treaties and appoint ambassadors and other public ministers, take care that the laws be faithfully executed, and commission all the officers of the United States.
Metadata Filtering#
Metadata filtering allows you to retrieve relevant documents that match specific filters.
Add nodes to your vector store and create an index.
from llama_index.vector_stores import RocksetVectorStore
from llama_index import VectorStoreIndex, StorageContext
from llama_index.vector_stores.types import NodeWithEmbedding
from llama_index.schema import TextNode
nodes = [
NodeWithEmbedding(
node=TextNode(
text="Apples are blue",
metadata={"type": "fruit"},
),
embedding=[],
)
]
index = VectorStoreIndex(
nodes,
storage_context=StorageContext.from_defaults(
vector_store=RocksetVectorStore(collection="llamaindex_demo")
),
)
Define metadata filters.
from llama_index.vector_stores.types import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[ExactMatchFilter(key="type", value="fruit")]
)
Retrieve relevant documents that satisfy the filters.
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What colors are apples?")
Creating an Index from an Existing Collection#
You can create indices with data from existing collections.
from llama_index import VectorStoreIndex
from llama_index.vector_stores import RocksetVectorStore
vector_store = RocksetVectorStore(collection="llamaindex_demo")
index = VectorStoreIndex.from_vector_store(vector_store)
Creating an Index from a New Collection#
You can also create a new Rockset collection to use as a vector store.
from llama_index.vector_stores import RocksetVectorStore
vector_store = RocksetVectorStore.with_new_collection(
collection="llamaindex_demo", # name of new collection
dimensions=1536, # specifies length of vectors in ingest tranformation (optional)
# other RocksetVectorStore args
)
index = VectorStoreIndex(
nodes,
storage_context=StorageContext.from_defaults(vector_store=vector_store),
)
Configuration#
collection: Name of the collection to query (required).
RocksetVectorStore(collection="my_collection")
workspace: Name of the workspace containing the collection. Defaults to
"commons"
.
RocksetVectorStore(worksapce="my_workspace")
api_key: The API key to use to authenticate Rockset requests. Ignored if
client
is passed in. Defaults to theROCKSET_API_KEY
environment variable.
RocksetVectorStore(api_key="<my key>")
api_server: The API server to use for Rockset requests. Ignored if
client
is passed in. Defaults to theROCKSET_API_KEY
environment variable or"https://api.use1a1.rockset.com"
if theROCKSET_API_SERVER
is not set.
from rockset import Regions
RocksetVectorStore(api_server=Regions.euc1a1)
client: Rockset client object to use to execute Rockset requests. If not specified, a client object is internally constructed with the
api_key
parameter (orROCKSET_API_SERVER
environment variable) and theapi_server
parameter (orROCKSET_API_SERVER
environment variable).
from rockset import RocksetClient
RocksetVectorStore(client=RocksetClient(api_key="<my key>"))
embedding_col: The name of the database field containing embeddings. Defaults to
"embedding"
.
RocksetVectorStore(embedding_col="my_embedding")
metadata_col: The name of the database field containing node data. Defaults to
"metadata"
.
RocksetVectorStore(metadata_col="node")
distance_func: The metric to measure vector relationship. Defaults to cosine similarity.
RocksetVectorStore(distance_func=RocksetVectorStore.DistanceFunc.DOT_PRODUCT)