Fleet Context Embeddings - Building a Hybrid Search Engine for the Llamaindex Library#
In this guide, we will be using Fleet Context to download the embeddings for LlamaIndex’s documentation and build a hybrid dense/sparse vector retrieval engine on top of it.
Pre-requisites#
!pip install llama-index
!pip install --upgrade fleet-context
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..." # add your API key here!
openai.api_key = os.environ["OPENAI_API_KEY"]
Download Embeddings from Fleet Context#
We will be using Fleet Context to download the embeddings for the entirety of LlamaIndex’s documentation (~12k chunks, ~100mb of content). You can download for any of the top 1220 libraries by specifying the library name as a parameter. You can view the full list of supported libraries here at the bottom of the page.
We do this because Fleet has built a embeddings pipeline that preserves a lot of important information that will make the retrieval and generation better including position on page (for re-ranking), chunk type (class/function/attribute/etc), the parent section, and more. You can read more about this on their Github page.
from context import download_embeddings
df = download_embeddings("llamaindex")
Output:
100%|██████████| 83.7M/83.7M [00:03<00:00, 27.4MiB/s]
id \
0 e268e2a1-9193-4e7b-bb9b-7a4cb88fc735
1 e495514b-1378-4696-aaf9-44af948de1a1
2 e804f616-7db0-4455-9a06-49dd275f3139
3 eb85c854-78f1-4116-ae08-53b2a2a9fa41
4 edfc116e-cf58-4118-bad4-c4bc0ca1495e
# Show some examples of the metadata
df["metadata"][0]
display(Markdown(f"{df['metadata'][8000]['text']}"))
Output:
classmethod from_dict(data: Dict[str, Any], kwargs: Any) → Self classmethod from_json(data_str: str, kwargs: Any) → Self classmethod from_orm(obj: Any) → Model json(, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True*, dumps_kwargs: Any) → unicode Generate a JSON representation of the model, include and exclude arguments as per dict().
Create Pinecone Index for Hybrid Search in LlamaIndex#
We’re going to create a Pinecone index and upsert our vectors there so that we can do hybrid retrieval with both sparse vectors and dense vectors. Make sure you have a Pinecone account before you proceed.
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import pinecone
api_key = "..." # Add your Pinecone API key here
pinecone.init(
api_key=api_key, environment="us-east-1-aws"
) # Add your db region here
# Fleet Context uses the text-embedding-ada-002 model from OpenAI with 1536 dimensions.
# NOTE: Pinecone requires dotproduct similarity for hybrid search
pinecone.create_index(
"quickstart-fleet-context",
dimension=1536,
metric="dotproduct",
pod_type="p1",
)
pinecone.describe_index(
"quickstart-fleet-context"
) # Make sure you create an index in pinecone
from llama_index.vector_stores import PineconeVectorStore
pinecone_index = pinecone.Index("quickstart-fleet-context")
vector_store = PineconeVectorStore(pinecone_index, add_sparse_vector=True)
Batch upsert vectors into Pinecone#
Pinecone recommends upserting 100 vectors at a time. We’re going to do that after we modify the format of the data a bit.
import random
import itertools
def chunks(iterable, batch_size=100):
"""A helper function to break an iterable into chunks of size batch_size."""
it = iter(iterable)
chunk = tuple(itertools.islice(it, batch_size))
while chunk:
yield chunk
chunk = tuple(itertools.islice(it, batch_size))
# generator that generates many (id, vector, metadata, sparse_values) pairs
data_generator = map(
lambda row: {
"id": row[1]["id"],
"values": row[1]["values"],
"metadata": row[1]["metadata"],
"sparse_values": row[1]["sparse_values"],
},
df.iterrows(),
)
# Upsert data with 1000 vectors per upsert request
for ids_vectors_chunk in chunks(data_generator, batch_size=100):
print(f"Upserting {len(ids_vectors_chunk)} vectors...")
pinecone_index.upsert(vectors=ids_vectors_chunk)
Build Pinecone Vector Store in LlamaIndex#
Finally, we’re going to build the Pinecone vector store via LlamaIndex and query it to get results.
from llama_index import VectorStoreIndex
from IPython.display import Markdown, display
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
Query Your Index!#
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid", similarity_top_k=8
)
response = query_engine.query("How do I use llama_index SimpleDirectoryReader")
display(Markdown(f"<b>{response}</b>"))
Output:
<b>To use the SimpleDirectoryReader in llama_index, you need to import it from the llama_index library. Once imported, you can create an instance of the SimpleDirectoryReader class by providing the directory path as an argument. Then, you can use the `load_data()` method on the SimpleDirectoryReader instance to load the documents from the specified directory.</b>