BagelReader#
- class llama_index.readers.BagelReader(collection_name: str)#
Bases:
BaseReader
Reader for Bagel files.
Methods Summary
create_documents
(results)Create documents from the results.
load_data
([query_vector, query_texts, ...])Get the top n_results documents for provided query_embeddings or query_texts.
Methods Documentation
- create_documents(results: Any) Any #
Create documents from the results.
- Parameters
results – Results from the query.
- Returns
List of documents.
- load_data(query_vector: Optional[Union[Sequence[float], Sequence[int], List[Union[Sequence[float], Sequence[int]]]]] = None, query_texts: Optional[Union[str, List[str]]] = None, limit: int = 10, where: Optional[Dict[Union[str, Literal['$and', '$or']], Union[str, int, float, Dict[Union[Literal['$gt', '$gte', '$lt', '$lte', '$ne', '$eq'], Literal['$and', '$or']], Union[str, int, float]], List[Dict[Union[str, Literal['$and', '$or']], Union[str, int, float, Dict[Union[Literal['$gt', '$gte', '$lt', '$lte', '$ne', '$eq'], Literal['$and', '$or']], Union[str, int, float]], List[Where]]]]]]] = None, where_document: Optional[Dict[Union[Literal['$contains'], Literal['$and', '$or']], Union[str, List[Dict[Union[Literal['$contains'], Literal['$and', '$or']], Union[str, List[WhereDocument]]]]]]] = None, include: List[Literal['documents', 'embeddings', 'metadatas', 'distances']] = ['metadatas', 'documents', 'embeddings', 'distances']) Any #
Get the top n_results documents for provided query_embeddings or query_texts.
- Parameters
query_embeddings – The embeddings to get the closes neighbors of. Optional.
query_texts – The document texts to get the closes neighbors of. Optional.
n_results – The number of neighbors to return for each query. Optional.
where – A Where type dict used to filter results by. Optional.
where_document – A WhereDocument type dict used to filter. Optional.
include – A list of what to include in the results. Optional.
- Returns
Llama Index Document(s) with the closest embeddings to the query_embeddings or query_texts.