Ingestion Pipeline + Document Management#
Attaching a docstore
to the ingestion pipeline will enable document management.
Using the document.doc_id
or node.ref_doc_id
as a grounding point, the ingestion pipeline will actively look for duplicate documents.
It works by
Storing a map of
doc_id
->document_hash
If a duplicate
doc_id
is detected, and the hash has changed, the document will be re-processedIf the hash has not changed, the document will be skipped in the pipeline
If we do not attach a vector store, we can only check for and remove duplicate inputs.
If a vector store is attached, we can also handle upserts! We have another guide for upserts and vector stores.
Create Seed Data#
# Make some test data
!mkdir -p data
!echo "This is a test file: one!" > data/test1.txt
!echo "This is a test file: two!" > data/test2.txt
from llama_index import SimpleDirectoryReader
# load documents with deterministic IDs
documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data()
/home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.8.9) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.
warnings.warn(
Create Pipeline with Document Store#
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.ingestion import IngestionPipeline
from llama_index.storage.docstore import (
SimpleDocumentStore,
RedisDocumentStore,
MongoDocumentStore,
)
from llama_index.text_splitter import SentenceSplitter
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
],
docstore=SimpleDocumentStore(),
)
nodes = pipeline.run(documents=documents)
Docstore strategy set to upserts, but no vector store. Switching to duplicates_only strategy.
print(f"Ingested {len(nodes)} Nodes")
Ingested 2 Nodes
[Optional] Save/Load Pipeline#
Saving the pipeline will save both the internal cache and docstore.
NOTE: If you were using remote caches/docstores, this step is not needed
pipeline.persist("./pipeline_storage")
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
]
)
# restore the pipeline
pipeline.load("./pipeline_storage")
Test the Document Management#
Here, we can create a new document, as well as edit an existing document, to test the document management.
Both the new document and edited document will be ingested, while the unchanged document will be skipped
!echo "This is a test file: three!" > data/test3.txt
!echo "This is a NEW test file: one!" > data/test1.txt
documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data()
nodes = pipeline.run(documents=documents)
Docstore strategy set to upserts, but no vector store. Switching to duplicates_only strategy.
print(f"Ingested {len(nodes)} Nodes")
Ingested 2 Nodes
Lets confirm which nodes were ingested:
for node in nodes:
print(f"Node: {node.text}")
Node: This is a NEW test file: one!
Node: This is a test file: three!
We can also verify the docstore has only three documents tracked
print(len(pipeline.docstore.docs))
3