Langchain Output Parsing#
Download Data
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Will not apply HSTS. The HSTS database must be a regular and non-world-writable file.
ERROR: could not open HSTS store at '/home/loganm/.wget-hsts'. HSTS will be disabled.
--2023-12-11 10:24:04-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.108.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 75042 (73K) [text/plain]
Saving to: ‘data/paul_graham/paul_graham_essay.txt’
data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.04s
2023-12-11 10:24:04 (1.74 MB/s) - ‘data/paul_graham/paul_graham_essay.txt’ saved [75042/75042]
Load documents, build the VectorStoreIndex#
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index import VectorStoreIndex, SimpleDirectoryReader
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents, chunk_size=512)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Define Query + Langchain Output Parser#
from llama_index.output_parsers import LangchainOutputParser
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
Define custom QA and Refine Prompts
response_schemas = [
ResponseSchema(
name="Education",
description=(
"Describes the author's educational experience/background."
),
),
ResponseSchema(
name="Work",
description="Describes the author's work experience/background.",
),
]
lc_output_parser = StructuredOutputParser.from_response_schemas(
response_schemas
)
output_parser = LangchainOutputParser(lc_output_parser)
from llama_index.prompts.default_prompts import (
DEFAULT_TEXT_QA_PROMPT_TMPL,
)
# take a look at the new QA template!
fmt_qa_tmpl = output_parser.format(DEFAULT_TEXT_QA_PROMPT_TMPL)
print(fmt_qa_tmpl)
Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the query.
Query: {query_str}
Answer:
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":
```json
{{
"Education": string // Describes the author's educational experience/background.
"Work": string // Describes the author's work experience/background.
}}
```
Query Index#
from llama_index import ServiceContext
from llama_index.llms import OpenAI
llm = OpenAI(output_parser=output_parser)
ctx = ServiceContext.from_defaults(llm=llm)
query_engine = index.as_query_engine(
service_context=ctx,
)
response = query_engine.query(
"What are a few things the author did growing up?",
)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
print(response)
{'Education': 'The author did not plan to study programming in college, but initially planned to study philosophy.', 'Work': 'Growing up, the author worked on writing short stories and programming. They wrote simple games, a program to predict rocket heights, and a word processor.'}