EpsillaVectorStore#
- class llama_index.vector_stores.EpsillaVectorStore(client: Any, collection_name: str = 'llama_collection', db_path: Optional[str] = './storage', db_name: Optional[str] = 'llama_db', dimension: Optional[int] = None, overwrite: bool = False, **kwargs: Any)#
Bases:
VectorStore
The Epsilla Vector Store.
In this vector store we store the text, its embedding and a few pieces of its metadata in a Epsilla collection. This implemnetation allows the use of an already existing collection. It also supports creating a new one if the collection does not exist or if overwrite is set to True.
As a prerequisite, you need to install
pyepsilla
package and have a running Epsilla vector database (for example, through our docker image) See the following documentation for how to run an Epsilla vector database: https://epsilla-inc.gitbook.io/epsilladb/quick-start- Parameters
client (Any) – Epsilla client to connect to.
collection_name (Optional[str]) – Which collection to use. Defaults to “llama_collection”.
db_path (Optional[str]) – The path where the database will be persisted. Defaults to “/tmp/langchain-epsilla”.
db_name (Optional[str]) – Give a name to the loaded database. Defaults to “langchain_store”.
dimension (Optional[int]) – The dimension of the embeddings. If not provided, collection creation will be done on first insert. Defaults to None.
overwrite (Optional[bool]) – Whether to overwrite existing collection with same name. Defaults to False.
- Returns
Vectorstore that supports add, delete, and query.
- Return type
Attributes Summary
Methods Summary
add
(nodes, **add_kwargs)Add nodes to Epsilla vector store.
client
()Return the Epsilla client.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- flat_metadata: bool = False#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to Epsilla vector store.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- Returns
List of ids inserted.
- Return type
List[str]
- client() Any #
Return the Epsilla client.
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query (VectorStoreQuery) – query.
- Returns
Vector store query result.