FaissReader#
- class llama_index.readers.FaissReader(index: Any)#
Bases:
BaseReader
Faiss reader.
Retrieves documents through an existing in-memory Faiss index. These documents can then be used in a downstream LlamaIndex data structure. If you wish use Faiss itself as an index to to organize documents, insert documents, and perform queries on them, please use VectorStoreIndex with FaissVectorStore.
- Parameters
faiss_index (faiss.Index) – A Faiss Index object (required)
Methods Summary
load_data
(query, id_to_text_map[, k, ...])Load data from Faiss.
Methods Documentation
- load_data(query: ndarray, id_to_text_map: Dict[str, str], k: int = 4, separate_documents: bool = True) List[Document] #
Load data from Faiss.
- Parameters
query (np.ndarray) – A 2D numpy array of query vectors.
id_to_text_map (Dict[str, str]) – A map from ID’s to text.
k (int) – Number of nearest neighbors to retrieve. Defaults to 4.
separate_documents (Optional[bool]) – Whether to return separate documents. Defaults to True.
- Returns
A list of documents.
- Return type
List[Document]