Getting Started#

Installing Vertex AI#

To Install Vertex AI you need to follow the following steps

  • Install Vertex Cloud SDK (https://googleapis.dev/python/aiplatform/latest/index.html)

  • Setup your Default Project, credentials, region

Basic auth example for service account#

from llama_index.llms.vertex import Vertex
from google.oauth2 import service_account

filename = "vertex-407108-37495ce6c303.json"
credentials: service_account.Credentials = (
    service_account.Credentials.from_service_account_file(filename)
)
Vertex(
    model="text-bison", project=credentials.project_id, credentials=credentials
)

Basic Usage#

Basic call to the text-bison model

from llama_index.llms.vertex import Vertex
from llama_index.llms import ChatMessage, MessageRole

llm = Vertex(model="text-bison", temperature=0, additional_kwargs={})
llm.complete("Hello this is a sample text").text
' ```\nHello this is a sample text\n```'

Async Usage#

Async#

(await llm.acomplete("hello")).text
' Hello! How can I help you?'

Streaming Usage#

Streaming#

list(llm.stream_complete("hello"))[-1].text
' Hello! How can I help you?'

Chat Usage#

chat generation#

chat = Vertex(model="chat-bison")
messages = [
    ChatMessage(role=MessageRole.SYSTEM, content="Reply everything in french"),
    ChatMessage(role=MessageRole.USER, content="Hello"),
]
chat.chat(messages=messages).message.content
' Bonjour! Comment vas-tu?'

Async Chat#

Asynchronous chat response#

(await chat.achat(messages=messages)).message.content
' Bonjour! Comment vas-tu?'

Streaming Chat#

streaming chat response#

list(chat.stream_chat(messages=messages))[-1].message.content
' Bonjour! Comment vas-tu?'

Gemini Models#

Calling Google Gemini Models using Vertex AI is fully supported.

Gemini Pro#

llm = Vertex(
    model="gemini-pro", project=credentials.project_id, credentials=credentials
)
llm.complete("Hello Gemini").text

Gemini Pro Vision#

history = [
    ChatMessage(
        role="user",
        content=[
            {"type": "text", "text": "Explain what is in the image below:"},
            {
                "type": "image_url",
                "image_url": "",
            },
        ],
    ),
]
llm = Vertex(
    model="gemini-pro-vision",
    project=credentials.project_id,
    credentials=credentials,
)
llm.chat(history).message.content