DashVectorStore#
- class llama_index.vector_stores.DashVectorStore(collection: Optional[Any] = None, support_sparse_vector: bool = False, encoder: Optional[Any] = None)#
Bases:
VectorStore
Dash Vector Store.
In this vector store, embeddings and docs are stored within a DashVector collection.
During query time, the index uses DashVector to query for the top k most similar nodes.
- Parameters
collection (Optional[dashvector.Collection]) – DashVector collection instance
support_sparse_vector (bool) – whether support sparse vector for collection.
encoder (Optional[dashtext.SparseVectorEncoder]) – encoder for generating sparse vector from document
Attributes Summary
Methods Summary
add
(nodes, **add_kwargs)Add nodes to vector store.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query, **kwargs)Query vector store.
Attributes Documentation
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to vector store.
- Parameters
nodes (List[BaseNode]) – list of nodes with embeddings
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query vector store.