XOrbits Xinference#
- pydantic model llama_index.llms.xinference.Xinference#
Show JSON schema
{ "title": "Xinference", "description": "Simple abstract base class for custom LLMs.\n\nSubclasses must implement the `__init__`, `_complete`,\n `_stream_complete`, and `metadata` methods.", "type": "object", "properties": { "callback_manager": { "title": "Callback Manager" }, "system_prompt": { "title": "System Prompt", "description": "System prompt for LLM calls.", "type": "string" }, "messages_to_prompt": { "title": "Messages To Prompt" }, "completion_to_prompt": { "title": "Completion To Prompt" }, "output_parser": { "title": "Output Parser" }, "pydantic_program_mode": { "default": "default", "allOf": [ { "$ref": "#/definitions/PydanticProgramMode" } ] }, "query_wrapper_prompt": { "title": "Query Wrapper Prompt" }, "model_uid": { "title": "Model Uid", "description": "The Xinference model to use.", "type": "string" }, "endpoint": { "title": "Endpoint", "description": "The Xinference endpoint URL to use.", "type": "string" }, "temperature": { "title": "Temperature", "description": "The temperature to use for sampling.", "gte": 0.0, "lte": 1.0, "type": "number" }, "max_tokens": { "title": "Max Tokens", "description": "The maximum new tokens to generate as answer.", "exclusiveMinimum": 0, "type": "integer" }, "context_window": { "title": "Context Window", "description": "The maximum number of context tokens for the model.", "exclusiveMinimum": 0, "type": "integer" }, "model_description": { "title": "Model Description", "description": "The model description from Xinference.", "type": "object" }, "class_name": { "title": "Class Name", "type": "string", "default": "Xinference_llm" } }, "required": [ "model_uid", "endpoint", "temperature", "max_tokens", "context_window", "model_description" ], "definitions": { "PydanticProgramMode": { "title": "PydanticProgramMode", "description": "Pydantic program mode.", "enum": [ "default", "openai", "llm", "guidance", "lm-format-enforcer" ], "type": "string" } } }
- Config
arbitrary_types_allowed: bool = True
- Fields
- Validators
_validate_callback_manager
»callback_manager
set_completion_to_prompt
»completion_to_prompt
set_messages_to_prompt
»messages_to_prompt
- field context_window: int [Required]#
The maximum number of context tokens for the model.
- Constraints
exclusiveMinimum = 0
- field endpoint: str [Required]#
The Xinference endpoint URL to use.
- field max_tokens: int [Required]#
The maximum new tokens to generate as answer.
- Constraints
exclusiveMinimum = 0
- field model_description: Dict[str, Any] [Required]#
The model description from Xinference.
- field model_uid: str [Required]#
The Xinference model to use.
- field temperature: float [Required]#
The temperature to use for sampling.
- chat(messages: Sequence[ChatMessage], **kwargs: Any) Any #
Chat endpoint for LLM.
- classmethod class_name() str #
Get the class name, used as a unique ID in serialization.
This provides a key that makes serialization robust against actual class name changes.
- complete(*args: Any, **kwargs: Any) Any #
Completion endpoint for LLM.
- load_model(model_uid: str, endpoint: str) Tuple[Any, int, dict] #
- stream_chat(messages: Sequence[ChatMessage], **kwargs: Any) Any #
Streaming chat endpoint for LLM.
- stream_complete(*args: Any, **kwargs: Any) Any #
Streaming completion endpoint for LLM.
- property metadata: LLMMetadata#
LLM metadata.