Redis Ingestion Pipeline#
This walkthrough shows how to use Redis for both the vector store, cache, and docstore in an Ingestion Pipeline.
Dependencies#
Install and start redis, setup OpenAI API key
!pip install redis
Requirement already satisfied: redis in /home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages (5.0.1)
Requirement already satisfied: async-timeout>=4.0.2 in /home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages (from redis) (4.0.3)
[notice] A new release of pip is available: 23.2.1 -> 23.3.1
[notice] To update, run: pip install --upgrade pip
!docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
338c889086e8649aa80dfb79ebff4fffc98d72fc6d988ac158c6662e9e0cf04b
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
Create Seed Data#
# Make some test data
!rm -rf test_redis_data
!mkdir -p test_redis_data
!echo "This is a test file: one!" > test_redis_data/test1.txt
!echo "This is a test file: two!" > test_redis_data/test2.txt
from llama_index import SimpleDirectoryReader
# load documents with deterministic IDs
documents = SimpleDirectoryReader(
"./test_redis_data", filename_as_id=True
).load_data()
/home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.8.9) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.
warnings.warn(
Run the Redis-Based Ingestion Pipeline#
With a vector store attached, the pipeline will handle upserting data into your vector store.
However, if you only want to handle duplcates, you can change the strategy to DUPLICATES_ONLY
.
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.ingestion import (
DocstoreStrategy,
IngestionPipeline,
IngestionCache,
)
from llama_index.ingestion.cache import RedisCache
from llama_index.storage.docstore import RedisDocumentStore
from llama_index.text_splitter import SentenceSplitter
from llama_index.vector_stores import RedisVectorStore
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
embed_model,
],
docstore=RedisDocumentStore.from_host_and_port(
"localhost", 6379, namespace="document_store"
),
vector_store=RedisVectorStore(
index_name="redis_vector_store",
index_prefix="vectore_store",
redis_url="redis://localhost:6379",
),
cache=IngestionCache(
cache=RedisCache.from_host_and_port("localhost", 6379),
collection="redis_cache",
),
docstore_strategy=DocstoreStrategy.UPSERTS,
)
nodes = pipeline.run(documents=documents)
print(f"Ingested {len(nodes)} Nodes")
Ingested 2 Nodes
Confirm documents are ingested#
We can create a vector index using our vector store, and quickly ask which documents are seen.
from llama_index import VectorStoreIndex, ServiceContext
service_context = ServiceContext.from_defaults(embed_model=embed_model)
index = VectorStoreIndex.from_vector_store(
pipeline.vector_store, service_context=service_context
)
print(
index.as_query_engine(similarity_top_k=10).query(
"What documents do you see?"
)
)
I see two documents: "test2.txt" and "test1.txt".
Add data and Ingest#
Here, we can update an existing file, as well as add a new one!
!echo "This is a test file: three!" > test_redis_data/test3.txt
!echo "This is a NEW test file: one!" > test_redis_data/test1.txt
documents = SimpleDirectoryReader(
"./test_redis_data", filename_as_id=True
).load_data()
nodes = pipeline.run(documents=documents)
print(f"Ingested {len(nodes)} Nodes")
Ingested 2 Nodes
index = VectorStoreIndex.from_vector_store(
pipeline.vector_store, service_context=service_context
)
response = index.as_query_engine(similarity_top_k=10).query(
"What documents do you see?"
)
print(response)
for node in response.source_nodes:
print(node.get_text())
I see three documents: test3.txt, test1.txt, and test2.txt.
This is a test file: three!
This is a NEW test file: one!
This is a test file: two!
As we can see, the data was deduplicated and upserted correctly! Only three nodes are in the index, even though we ran the full pipeline twice.