ChromaVectorStore#
- pydantic model llama_index.vector_stores.ChromaVectorStore#
Chroma vector store.
In this vector store, embeddings are stored within a ChromaDB collection.
During query time, the index uses ChromaDB to query for the top k most similar nodes.
- Parameters
chroma_collection (chromadb.api.models.Collection.Collection) – ChromaDB collection instance
Show JSON schema
{ "title": "ChromaVectorStore", "description": "Chroma vector store.\n\nIn this vector store, embeddings are stored within a ChromaDB collection.\n\nDuring query time, the index uses ChromaDB to query for the top\nk most similar nodes.\n\nArgs:\n chroma_collection (chromadb.api.models.Collection.Collection):\n ChromaDB collection instance", "type": "object", "properties": { "stores_text": { "title": "Stores Text", "default": true, "type": "boolean" }, "is_embedding_query": { "title": "Is Embedding Query", "default": true, "type": "boolean" }, "flat_metadata": { "title": "Flat Metadata", "default": true, "type": "boolean" }, "collection_name": { "title": "Collection Name", "type": "string" }, "host": { "title": "Host", "type": "string" }, "port": { "title": "Port", "type": "string" }, "ssl": { "title": "Ssl", "type": "boolean" }, "headers": { "title": "Headers", "type": "object", "additionalProperties": { "type": "string" } }, "persist_dir": { "title": "Persist Dir", "type": "string" }, "collection_kwargs": { "title": "Collection Kwargs", "type": "object" }, "class_name": { "title": "Class Name", "type": "string", "default": "ChromaVectorStore" } }, "required": [ "ssl" ] }
- Config
schema_extra: function = <function BaseComponent.Config.schema_extra at 0x7ff1e41e53a0>
- Fields
collection_kwargs (Dict[str, Any])
collection_name (Optional[str])
flat_metadata (bool)
headers (Optional[Dict[str, str]])
host (Optional[str])
persist_dir (Optional[str])
port (Optional[str])
ssl (bool)
stores_text (bool)
- field collection_kwargs: Dict[str, Any] [Optional]#
- field collection_name: Optional[str] = None#
- field flat_metadata: bool = True#
- field headers: Optional[Dict[str, str]] = None#
- field host: Optional[str] = None#
- field persist_dir: Optional[str] = None#
- field port: Optional[str] = None#
- field ssl: bool [Required]#
- field stores_text: bool = True#
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- classmethod class_name() str #
Get the class name, used as a unique ID in serialization.
This provides a key that makes serialization robust against actual class name changes.
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- classmethod from_collection(collection: Any) ChromaVectorStore #
- classmethod from_params(collection_name: str, host: Optional[str] = None, port: Optional[str] = None, ssl: bool = False, headers: Optional[Dict[str, str]] = None, persist_dir: Optional[str] = None, collection_kwargs: dict = {}, **kwargs: Any) ChromaVectorStore #
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query_embedding (List[float]) – query embedding
similarity_top_k (int) – top k most similar nodes
- property client: Any#
Return client.