AzureAISearchVectorStore#
- class llama_index.vector_stores.AzureAISearchVectorStore(search_or_index_client: Any, id_field_key: str, chunk_field_key: str, embedding_field_key: str, metadata_string_field_key: str, doc_id_field_key: str, filterable_metadata_field_keys: Optional[Union[List[str], Dict[str, str], Dict[str, Tuple[str, MetadataIndexFieldType]]]] = None, index_name: Optional[str] = None, index_mapping: Optional[Callable[[Dict[str, str], Dict[str, Any]], Dict[str, str]]] = None, index_management: IndexManagement = IndexManagement.NO_VALIDATION, embedding_dimensionality: int = 1536, **kwargs: Any)#
Bases:
VectorStore
Attributes Summary
Get client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to index associated with the configured search client.
delete
(ref_doc_id, **delete_kwargs)Delete documents from the AI Search Index with doc_id_field_key field equal to ref_doc_id.
query
(query, **kwargs)Query vector store.
Attributes Documentation
- client#
Get client.
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index associated with the configured search client.
- Parameters
nodes – List[BaseNode]: nodes with embeddings
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete documents from the AI Search Index with doc_id_field_key field equal to ref_doc_id.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query vector store.