AstraDBVectorStore#
- pydantic model llama_index.vector_stores.AstraDBVectorStore#
Astra DB Vector Store.
An abstraction of a Astra table with vector-similarity-search. Documents, and their embeddings, are stored in an Astra table and a vector-capable index is used for searches. The table does not need to exist beforehand: if necessary it will be created behind the scenes.
All Astra operations are done through the astrapy library.
- Parameters
collection_name (str) – collection name to use. If not existing, it will be created.
token (str) – The Astra DB Application Token to use.
api_endpoint (str) – The Astra DB JSON API endpoint for your database.
embedding_dimension (int) – length of the embedding vectors in use.
namespace (Optional[str]) – The namespace to use. If not provided, ‘default_keyspace’
ttl_seconds (Optional[int]) – expiration time for inserted entries. Default is no expiration.
Show JSON schema
{ "title": "AstraDBVectorStore", "description": "Astra DB Vector Store.\n\nAn abstraction of a Astra table with\nvector-similarity-search. Documents, and their embeddings, are stored\nin an Astra table and a vector-capable index is used for searches.\nThe table does not need to exist beforehand: if necessary it will\nbe created behind the scenes.\n\nAll Astra operations are done through the astrapy library.\n\nArgs:\n collection_name (str): collection name to use. If not existing, it will be created.\n token (str): The Astra DB Application Token to use.\n api_endpoint (str): The Astra DB JSON API endpoint for your database.\n embedding_dimension (int): length of the embedding vectors in use.\n namespace (Optional[str]): The namespace to use. If not provided, 'default_keyspace'\n ttl_seconds (Optional[int]): expiration time for inserted entries.\n Default is no expiration.", "type": "object", "properties": { "stores_text": { "title": "Stores Text", "default": true, "type": "boolean" }, "is_embedding_query": { "title": "Is Embedding Query", "default": true, "type": "boolean" }, "flat_metadata": { "title": "Flat Metadata", "default": true, "type": "boolean" }, "class_name": { "title": "Class Name", "type": "string", "default": "base_component" } } }
- Config
schema_extra: function = <function BaseComponent.Config.schema_extra at 0x7ff1e41e53a0>
- Fields
flat_metadata (bool)
stores_text (bool)
- field flat_metadata: bool = True#
- field stores_text: bool = True#
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of node with embeddings
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The id of the document to delete.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- property client: Any#
Return the underlying Astra vector table object.