TairVectorStore#
- class llama_index.vector_stores.TairVectorStore(tair_url: str, index_name: str, index_type: str = 'HNSW', index_args: Optional[Dict[str, Any]] = None, overwrite: bool = False, **kwargs: Any)#
Bases:
VectorStore
Attributes Summary
Return the Tair client instance.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to the index.
delete
(ref_doc_id, **delete_kwargs)Delete a document.
Delete the index and all documents.
query
(query, **kwargs)Query the index.
Attributes Documentation
- client#
Return the Tair client instance.
- flat_metadata = False#
- stores_node = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to the index.
- Parameters
nodes (List[BaseNode]) – List of nodes with embeddings
- Returns
List of ids of the documents added to the index.
- Return type
List[str]
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete a document.
- Parameters
doc_id (str) – document id
- delete_index() None #
Delete the index and all documents.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query the index.
- Parameters
query (VectorStoreQuery) – query object
- Returns
query result
- Return type
- Raises
ValueError – If query.query_embedding is None.