TimescaleVectorStore#

class llama_index.vector_stores.TimescaleVectorStore(service_url: str, table_name: str, num_dimensions: int = 1536, time_partition_interval: Optional[timedelta] = None)#

Bases: VectorStore

Attributes Summary

Methods Summary

add(nodes, **add_kwargs)

Add nodes with embedding to vector store.

aquery(query, **kwargs)

Asynchronously query vector store.

async_add(nodes, **add_kwargs)

Asynchronously add nodes with embedding to vector store.

close()

create_index([index_type])

date_to_range_filter(**kwargs)

delete(ref_doc_id, **delete_kwargs)

Delete nodes using with ref_doc_id.

drop_index()

from_params(service_url, table_name[, ...])

query(query, **kwargs)

Query vector store.

Attributes Documentation

DEFAULT_INDEX_TYPE = 1#
flat_metadata = False#
stores_text: bool = True#

Methods Documentation

add(nodes: List[BaseNode], **add_kwargs: Any) List[str]#

Add nodes with embedding to vector store.

async aquery(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult#

Asynchronously query vector store. NOTE: this is not implemented for all vector stores. If not implemented, it will just call query synchronously.

async async_add(nodes: List[BaseNode], **add_kwargs: Any) List[str]#

Asynchronously add nodes with embedding to vector store. NOTE: this is not implemented for all vector stores. If not implemented, it will just call add synchronously.

async close() None#
create_index(index_type: IndexType = IndexType.TIMESCALE_VECTOR, **kwargs: Any) None#
date_to_range_filter(**kwargs: Any) Any#
delete(ref_doc_id: str, **delete_kwargs: Any) None#

Delete nodes using with ref_doc_id.

drop_index() None#
classmethod from_params(service_url: str, table_name: str, num_dimensions: int = 1536, time_partition_interval: Optional[timedelta] = None) TimescaleVectorStore#
query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult#

Query vector store.