TimescaleVectorStore#
- class llama_index.vector_stores.TimescaleVectorStore(service_url: str, table_name: str, num_dimensions: int = 1536, time_partition_interval: Optional[timedelta] = None)#
Bases:
VectorStore
Attributes Summary
Methods Summary
add
(nodes, **add_kwargs)Add nodes with embedding to vector store.
aquery
(query, **kwargs)Asynchronously query vector store.
async_add
(nodes, **add_kwargs)Asynchronously add nodes with embedding to vector store.
close
()create_index
([index_type])date_to_range_filter
(**kwargs)delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
from_params
(service_url, table_name[, ...])query
(query, **kwargs)Query vector store.
Attributes Documentation
- DEFAULT_INDEX_TYPE = 1#
- flat_metadata = False#
- stores_text: bool = True#
Methods Documentation
- async aquery(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Asynchronously query vector store. NOTE: this is not implemented for all vector stores. If not implemented, it will just call query synchronously.
- async async_add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Asynchronously add nodes with embedding to vector store. NOTE: this is not implemented for all vector stores. If not implemented, it will just call add synchronously.
- async close() None #
- create_index(index_type: IndexType = IndexType.TIMESCALE_VECTOR, **kwargs: Any) None #
- date_to_range_filter(**kwargs: Any) Any #
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- drop_index() None #
- classmethod from_params(service_url: str, table_name: str, num_dimensions: int = 1536, time_partition_interval: Optional[timedelta] = None) TimescaleVectorStore #
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query vector store.