MongoDBAtlasVectorSearch#
- class llama_index.vector_stores.MongoDBAtlasVectorSearch(mongodb_client: Optional[Any] = None, db_name: str = 'default_db', collection_name: str = 'default_collection', index_name: str = 'default', id_key: str = 'id', embedding_key: str = 'embedding', text_key: str = 'text', metadata_key: str = 'metadata', insert_kwargs: Optional[Dict] = None, **kwargs: Any)#
Bases:
VectorStore
MongoDB Atlas Vector Store.
To use, you should have both: - the
pymongo
python package installed - a connection string associated with a MongoDB Atlas Cluster that has an Atlas Vector Search indexAttributes Summary
Return MongoDB client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to index.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- client#
Return MongoDB client.
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- Returns
A List of ids for successfully added nodes.
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query – a VectorStoreQuery object.
- Returns
A VectorStoreQueryResult containing the results of the query.