Query Transform#
Query Transforms.
- class llama_index.indices.query.query_transform.DecomposeQueryTransform(llm: Optional[Union[LLMPredictor, LLM]] = None, decompose_query_prompt: Optional[PromptTemplate] = None, verbose: bool = False)#
Decompose query transform.
Decomposes query into a subquery given the current index struct. Performs a single step transformation.
- Parameters
llm_predictor (Optional[LLM]) – LLM for generating hypothetical documents
- as_query_component(partial: Optional[Dict[str, Any]] = None, **kwargs: Any) QueryComponent #
Get query component.
- get_prompts() Dict[str, BasePromptTemplate] #
Get a prompt.
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle #
Run query transform.
- update_prompts(prompts_dict: Dict[str, BasePromptTemplate]) None #
Update prompts.
Other prompts will remain in place.
- class llama_index.indices.query.query_transform.HyDEQueryTransform(llm: Optional[Union[LLMPredictor, LLM]] = None, hyde_prompt: Optional[BasePromptTemplate] = None, include_original: bool = True)#
Hypothetical Document Embeddings (HyDE) query transform.
It uses an LLM to generate hypothetical answer(s) to a given query, and use the resulting documents as embedding strings.
As described in [Precise Zero-Shot Dense Retrieval without Relevance Labels] (https://arxiv.org/abs/2212.10496)
- as_query_component(partial: Optional[Dict[str, Any]] = None, **kwargs: Any) QueryComponent #
Get query component.
- get_prompts() Dict[str, BasePromptTemplate] #
Get a prompt.
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle #
Run query transform.
- update_prompts(prompts_dict: Dict[str, BasePromptTemplate]) None #
Update prompts.
Other prompts will remain in place.
- class llama_index.indices.query.query_transform.StepDecomposeQueryTransform(llm: Optional[Union[LLMPredictor, LLM]] = None, step_decompose_query_prompt: Optional[PromptTemplate] = None, verbose: bool = False)#
Step decompose query transform.
Decomposes query into a subquery given the current index struct and previous reasoning.
NOTE: doesn’t work yet.
- Parameters
llm_predictor (Optional[LLM]) – LLM for generating hypothetical documents
- as_query_component(partial: Optional[Dict[str, Any]] = None, **kwargs: Any) QueryComponent #
Get query component.
- get_prompts() Dict[str, BasePromptTemplate] #
Get a prompt.
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle #
Run query transform.
- update_prompts(prompts_dict: Dict[str, BasePromptTemplate]) None #
Update prompts.
Other prompts will remain in place.