MyScaleVectorStore#
- class llama_index.vector_stores.MyScaleVectorStore(myscale_client: Optional[Any] = None, table: str = 'llama_index', database: str = 'default', index_type: str = 'MSTG', metric: str = 'cosine', batch_size: int = 32, index_params: Optional[dict] = None, search_params: Optional[dict] = None, service_context: Optional[ServiceContext] = None, **kwargs: Any)#
Bases:
VectorStore
MyScale Vector Store.
In this vector store, embeddings and docs are stored within an existing MyScale cluster.
During query time, the index uses MyScale to query for the top k most similar nodes.
- Parameters
myscale_client (httpclient) – clickhouse-connect httpclient of an existing MyScale cluster.
table (str, optional) – The name of the MyScale table where data will be stored. Defaults to “llama_index”.
database (str, optional) – The name of the MyScale database where data will be stored. Defaults to “default”.
index_type (str, optional) – The type of the MyScale vector index. Defaults to “IVFFLAT”.
metric (str, optional) – The metric type of the MyScale vector index. Defaults to “cosine”.
batch_size (int, optional) – the size of documents to insert. Defaults to 32.
index_params (dict, optional) – The index parameters for MyScale. Defaults to None.
search_params (dict, optional) – The search parameters for a MyScale query. Defaults to None.
service_context (ServiceContext, optional) – Vector store service context. Defaults to None
Attributes Summary
Get client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to index.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
drop
()Drop MyScale Index and table.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- AMPLIFY_RATIO_GT5 = 20#
- AMPLIFY_RATIO_GT50 = 10#
- AMPLIFY_RATIO_LE5 = 100#
- client#
Get client.
- metadata_column: str = 'metadata'#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- drop() None #
Drop MyScale Index and table.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query (VectorStoreQuery) – query