LanceDBVectorStore#
- class llama_index.vector_stores.LanceDBVectorStore(uri: str, table_name: str = 'vectors', vector_column_name: str = 'vector', nprobes: int = 20, refine_factor: Optional[int] = None, text_key: str = 'text', doc_id_key: str = 'doc_id', **kwargs: Any)#
Bases:
VectorStore
The LanceDB Vector Store.
- Stores text and embeddings in LanceDB. The vector store will open an existing
LanceDB dataset or create the dataset if it does not exist.
- Parameters
uri (str, required) – Location where LanceDB will store its files.
table_name (str, optional) – The table name where the embeddings will be stored. Defaults to “vectors”.
vector_column_name (str, optional) – The vector column name in the table if different from default. Defaults to “vector”, in keeping with lancedb convention.
nprobes (int, optional) – The number of probes used. A higher number makes search more accurate but also slower. Defaults to 20.
refine_factor – (int, optional): Refine the results by reading extra elements and re-ranking them in memory. Defaults to None
- Raises
ImportError – Unable to import lancedb.
- Returns
- VectorStore that supports creating LanceDB datasets and
querying it.
- Return type
Attributes Summary
Get client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes with embedding to vector store.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- client#
Get client.
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.