SingleStoreVectorStore#
- class llama_index.vector_stores.SingleStoreVectorStore(table_name: str = 'embeddings', content_field: str = 'content', metadata_field: str = 'metadata', vector_field: str = 'vector', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)#
Bases:
VectorStore
SingleStore vector store.
This vector store stores embeddings within a SingleStore database table.
During query time, the index uses SingleStore to query for the top k most similar nodes.
- Parameters
table_name (str, optional) – Specifies the name of the table in use. Defaults to “embeddings”.
content_field (str, optional) – Specifies the field to store the content. Defaults to “content”.
metadata_field (str, optional) – Specifies the field to store metadata. Defaults to “metadata”.
vector_field (str, optional) – Specifies the field to store the vector. Defaults to “vector”.
pool (Following arguments pertain to the connection) –
pool_size (int, optional) – Determines the number of active connections in the pool. Defaults to 5.
max_overflow (int, optional) – Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10.
timeout (float, optional) – Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30.
connection (Following arguments pertain to the) –
host (str, optional) – Specifies the hostname, IP address, or URL for the database connection. The default scheme is “mysql”.
user (str, optional) – Database username.
password (str, optional) – Database password.
port (int, optional) – Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections.
database (str, optional) – Database name.
Attributes Summary
Return SingleStoreDB client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to index.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query[, filter])Query index for top k most similar nodes.
Attributes Documentation
- client#
Return SingleStoreDB client.
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- classmethod class_name() str #
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- query(query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query (VectorStoreQuery) – Contains query_embedding and similarity_top_k attributes.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
- Returns
Contains nodes, similarities, and ids attributes.
- Return type