Pandas Query Engine#
This guide shows you how to use our PandasQueryEngine
: convert natural language to Pandas python code using LLMs.
The input to the PandasQueryEngine
is a Pandas dataframe, and the output is a response. The LLM infers dataframe operations to perform in order to retrieve the result.
NOTE: We have measures in PandasQueryEngine to enforce safety and prevent arbitrary code execution. For instance, no execution of private/dunder methods, and access to a restricted set of globals.
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
!pip install llama-index
import logging
import sys
from IPython.display import Markdown, display
import pandas as pd
from llama_index.query_engine import PandasQueryEngine
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
Let’s start on a Toy DataFrame#
Here let’s load a very simple dataframe containing city and population pairs, and run the PandasQueryEngine
on it.
By setting verbose=True
we can see the intermediate generated instructions.
# Test on some sample data
df = pd.DataFrame(
{
"city": ["Toronto", "Tokyo", "Berlin"],
"population": [2930000, 13960000, 3645000],
}
)
query_engine = PandasQueryEngine(df=df, verbose=True)
response = query_engine.query(
"What is the city with the highest population?",
)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
> Pandas Instructions:
```
df['city'][df['population'].idxmax()]
```
> Pandas Output: Tokyo
display(Markdown(f"<b>{response}</b>"))
Tokyo
# get pandas python instructions
print(response.metadata["pandas_instruction_str"])
df['city'][df['population'].idxmax()]
We can also take the step of using an LLM to synthesize a response.
query_engine = PandasQueryEngine(df=df, verbose=True, synthesize_response=True)
response = query_engine.query(
"What is the city with the highest population? Give both the city and population",
)
print(str(response))
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
> Pandas Instructions:
```
df.loc[df['population'].idxmax()]
```
> Pandas Output: city Tokyo
population 13960000
Name: 1, dtype: object
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
The city with the highest population is Tokyo, with a population of 13,960,000.
Analyzing the Titanic Dataset#
The Titanic dataset is one of the most popular tabular datasets in introductory machine learning Source: https://www.kaggle.com/c/titanic
Download Data#
!wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/docs/examples/data/csv/titanic_train.csv' -O 'titanic_train.csv'
--2024-01-13 17:45:15-- https://raw.githubusercontent.com/jerryjliu/llama_index/main/docs/examples/data/csv/titanic_train.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 2606:50c0:8003::154, 2606:50c0:8002::154, 2606:50c0:8001::154, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|2606:50c0:8003::154|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 57726 (56K) [text/plain]
Saving to: ‘titanic_train.csv’
titanic_train.csv 100%[===================>] 56.37K --.-KB/s in 0.009s
2024-01-13 17:45:15 (6.45 MB/s) - ‘titanic_train.csv’ saved [57726/57726]
df = pd.read_csv("./titanic_train.csv")
query_engine = PandasQueryEngine(df=df, verbose=True)
response = query_engine.query(
"What is the correlation between survival and age?",
)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
> Pandas Instructions:
```
df['survived'].corr(df['age'])
```
> Pandas Output: -0.07722109457217755
display(Markdown(f"<b>{response}</b>"))
-0.07722109457217755
# get pandas python instructions
print(response.metadata["pandas_instruction_str"])
df['survived'].corr(df['age'])
Additional Steps#
Analyzing / Modifying prompts#
Let’s look at the prompts!
from llama_index.prompts import PromptTemplate
query_engine = PandasQueryEngine(df=df, verbose=True)
prompts = query_engine.get_prompts()
print(prompts["pandas_prompt"].template)
You are working with a pandas dataframe in Python.
The name of the dataframe is `df`.
This is the result of `print(df.head())`:
{df_str}
Follow these instructions:
{instruction_str}
Query: {query_str}
Expression:
print(prompts["response_synthesis_prompt"].template)
Given an input question, synthesize a response from the query results.
Query: {query_str}
Pandas Instructions (optional):
{pandas_instructions}
Pandas Output: {pandas_output}
Response:
You can update prompts as well:
new_prompt = PromptTemplate(
"""\
You are working with a pandas dataframe in Python.
The name of the dataframe is `df`.
This is the result of `print(df.head())`:
{df_str}
Follow these instructions:
{instruction_str}
Query: {query_str}
Expression: """
)
query_engine.update_prompts({"pandas_prompt": new_prompt})
This is the instruction string (that you can customize by passing in instruction_str
on initialization)
instruction_str = """\
1. Convert the query to executable Python code using Pandas.
2. The final line of code should be a Python expression that can be called with the `eval()` function.
3. The code should represent a solution to the query.
4. PRINT ONLY THE EXPRESSION.
5. Do not quote the expression.
"""
Implementing Query Engine using Query Pipeline Syntax#
If you want to learn to construct your own Pandas Query Engine using our Query Pipeline syntax and the prompt components above, check out our below tutorial.
Setting up a Pandas DataFrame query engine with Query Pipelines