SupabaseVectorStore#
- class llama_index.vector_stores.SupabaseVectorStore(postgres_connection_string: str, collection_name: str, dimension: int = 1536, **kwargs: Any)#
Bases:
VectorStore
Supbabase Vector.
In this vector store, embeddings are stored in Postgres table using pgvector.
During query time, the index uses pgvector/Supabase to query for the top k most similar nodes.
- Parameters
postgres_connection_string (str) – postgres connection string
collection_name (str) – name of the collection to store the embeddings in
Attributes Summary
Get client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to index.
delete
(ref_doc_id, **delete_kwargs)Delete doc.
get_by_id
(doc_id, **kwargs)Get row ids by doc id.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- client#
Get client.
- flat_metadata = False#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to index.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete doc.
:param : param ref_doc_id (str): document id
- get_by_id(doc_id: str, **kwargs: Any) list #
Get row ids by doc id.
- Parameters
doc_id (str) – document id
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query (List[float]) – query embedding