AwaDBVectorStore#
- class llama_index.vector_stores.AwaDBVectorStore(table_name: str = 'llamaindex_awadb', log_and_data_dir: Optional[str] = None, **kwargs: Any)#
Bases:
VectorStore
AwaDB vector store.
In this vector store, embeddings are stored within a AwaDB table.
During query time, the index uses AwaDB to query for the top k most similar nodes.
- Parameters
chroma_collection (chromadb.api.models.Collection.Collection) – ChromaDB collection instance
Attributes Summary
Get AwaDB client.
Methods Summary
add
(nodes, **add_kwargs)Add nodes to AwaDB.
delete
(ref_doc_id, **delete_kwargs)Delete nodes using with ref_doc_id.
query
(query, **kwargs)Query index for top k most similar nodes.
Attributes Documentation
- DEFAULT_TABLE_NAME = 'llamaindex_awadb'#
- client#
Get AwaDB client.
- flat_metadata: bool = True#
- stores_text: bool = True#
Methods Documentation
- add(nodes: List[BaseNode], **add_kwargs: Any) List[str] #
Add nodes to AwaDB.
- Parameters
nodes – List[BaseNode]: list of nodes with embeddings
- Returns
Added node ids
- delete(ref_doc_id: str, **delete_kwargs: Any) None #
Delete nodes using with ref_doc_id.
- Parameters
ref_doc_id (str) – The doc_id of the document to delete.
- Returns
None
- query(query: VectorStoreQuery, **kwargs: Any) VectorStoreQueryResult #
Query index for top k most similar nodes.
- Parameters
query – vector store query
- Returns
Query results
- Return type