Transformations#
A transformation is something that takes a list of nodes as an input, and returns a list of nodes. Each component that implements the Transformation
base class has both a synchronous __call__()
definition and an async acall()
definition.
Currently, the following components are Transformation
objects:
Embeddings
model (check our list of supported embeddings)
Usage Pattern#
While transformations are best used with with an IngestionPipeline
, they can also be used directly.
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.extractors import TitleExtractor
node_parser = SentenceSplitter(chunk_size=512)
extractor = TitleExtractor()
# use transforms directly
nodes = node_parser(documents)
# or use a transformation in async
nodes = await extractor.acall(nodes)
Combining with An Index#
Transformations can be passed into an index or overall global settings, and will be used when calling from_documents()
or insert()
on an index.
from llama_index.core import VectorStoreIndex
from llama_index.core.extractors import (
TitleExtractor,
QuestionsAnsweredExtractor,
)
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import TokenTextSplitter
transformations = [
TokenTextSplitter(chunk_size=512, chunk_overlap=128),
TitleExtractor(nodes=5),
QuestionsAnsweredExtractor(questions=3),
]
# global
from llama_index.core import Settings
Settings.transformations = [text_splitter, title_extractor, qa_extractor]
# per-index
index = VectorStoreIndex.from_documents(
documents, transformations=transformations
)
Custom Transformations#
You can implement any transformation yourself by implementing the base class.
The following custom transformation will remove any special characters or punctutaion in text.
import re
from llama_index.core import Document
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.schema import TransformComponent
class TextCleaner(TransformComponent):
def __call__(self, nodes, **kwargs):
for node in nodes:
node.text = re.sub(r"[^0-9A-Za-z ]", "", node.text)
return nodes
These can then be used directly or in any IngestionPipeline
.
# use in a pipeline
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(chunk_size=25, chunk_overlap=0),
TextCleaner(),
OpenAIEmbedding(),
],
)
nodes = pipeline.run(documents=[Document.example()])