Open In Colab

Deep Lake Vector Store Quickstart#

Deep Lake can be installed using pip.

%pip install llama-index-vector-stores-deeplake
!pip install llama-index
!pip install deeplake

Next, let’s import the required modules and set the needed environmental variables:

import os
import textwrap

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document
from llama_index.vector_stores.deeplake import DeepLakeVectorStore

os.environ["OPENAI_API_KEY"] = "sk-********************************"
os.environ["ACTIVELOOP_TOKEN"] = "********************************"

We are going to embed and store one of Paul Graham’s essays in a Deep Lake Vector Store stored locally. First, we download the data to a directory called data/paul_graham

import urllib.request

urllib.request.urlretrieve(
    "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt",
    "data/paul_graham/paul_graham_essay.txt",
)

We can now create documents from the source data file.

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
    "Document ID:",
    documents[0].doc_id,
    "Document Hash:",
    documents[0].hash,
)
Document ID: a98b6686-e666-41a9-a0bc-b79f0d666bde Document Hash: beaa54b3e9cea641e91e6975d2207af4f4200f4b2d629725d688f272372ce5bb

Finally, let’s create the Deep Lake Vector Store and populate it with data. We use a default tensor configuration, which creates tensors with text (str), metadata(json), id (str, auto-populated), embedding (float32). Learn more about tensor customizability here.

from llama_index.core import StorageContext

dataset_path = "./dataset/paul_graham"

# Create an index over the documents
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context
)

Uploading data to deeplake dataset.
100%|██████████| 22/22 [00:00<00:00, 684.80it/s]
Dataset(path='./dataset/paul_graham', tensors=['text', 'metadata', 'embedding', 'id'])

  tensor      htype      shape      dtype  compression
  -------    -------    -------    -------  ------- 
   text       text      (22, 1)      str     None   
 metadata     json      (22, 1)      str     None   
 embedding  embedding  (22, 1536)  float32   None   
    id        text      (22, 1)      str     None   

Deleting items from the database#

To find the id of a document to delete, you can query the underlying deeplake dataset directly

import deeplake

ds = deeplake.load(dataset_path)

idx = ds.id[0].numpy().tolist()
idx
./dataset/paul_graham loaded successfully.

['42f8220e-673d-4c65-884d-5a48a1a15b03']
index.delete(idx[0])