%pip install llama-index-vector-stores-weaviate
%pip install llama-index-embeddings-huggingface
!pip install llama-index
Advanced Ingestion Pipeline#
In this notebook, we implement an IngestionPipeline
with the following features
MongoDB transformation caching
Automatic vector databse insertion
A custom transformation
Redis Cache Setup#
All node + transformation combinations will have their outputs cached, which will save time on duplicate runs.
from llama_index.core.ingestion.cache import RedisCache
from llama_index.core.ingestion import IngestionCache
ingest_cache = IngestionCache(
cache=RedisCache.from_host_and_port(host="127.0.0.1", port=6379),
collection="my_test_cache",
)
Vector DB Setup#
For this example, we use weaviate as a vector store.
!pip install weaviate-client
import weaviate
auth_config = weaviate.AuthApiKey(api_key="...")
client = weaviate.Client(url="https://...", auth_client_secret=auth_config)
from llama_index.vector_stores.weaviate import WeaviateVectorStore
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="CachingTest"
)
Transformation Setup#
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
text_splitter = TokenTextSplitter(chunk_size=512)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
/home/loganm/.cache/pypoetry/virtualenvs/llama-index-4a-wkI5X-py3.11/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
Downloading (β¦)lve/main/config.json: 100%|ββββββββββ| 743/743 [00:00<00:00, 3.51MB/s]
Downloading pytorch_model.bin: 100%|ββββββββββ| 134M/134M [00:03<00:00, 34.6MB/s]
Downloading (β¦)okenizer_config.json: 100%|ββββββββββ| 366/366 [00:00<00:00, 2.20MB/s]
Downloading (β¦)solve/main/vocab.txt: 100%|ββββββββββ| 232k/232k [00:00<00:00, 2.47MB/s]
Downloading (β¦)/main/tokenizer.json: 100%|ββββββββββ| 711k/711k [00:00<00:00, 7.34MB/s]
Downloading (β¦)cial_tokens_map.json: 100%|ββββββββββ| 125/125 [00:00<00:00, 620kB/s]
Custom Transformation#
import re
from llama_index.core.schema import TransformComponent
class TextCleaner(TransformComponent):
def __call__(self, nodes, **kwargs):
for node in nodes:
node.text = re.sub(r"[^0-9A-Za-z ]", "", node.text)
return nodes
Running the pipeline#
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(
transformations=[
TextCleaner(),
text_splitter,
embed_model,
TitleExtractor(),
],
vector_store=vector_store,
cache=ingest_cache,
)
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("../data/paul_graham/").load_data()
nodes = pipeline.run(documents=documents)
Using our populated vector store#
import os
# needed for the LLM in the query engine
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
embed_model=embed_model,
)
query_engine = index.as_query_engine()
print(query_engine.query("What did the author do growing up?"))
The author worked on writing and programming growing up. They wrote short stories and also tried programming on an IBM 1401 computer using an early version of Fortran.
Re-run Ingestion to test Caching#
The next code block will execute almost instantly due to caching.
pipeline = IngestionPipeline(
transformations=[TextCleaner(), text_splitter, embed_model],
cache=ingest_cache,
)
nodes = pipeline.run(documents=documents)
Clear the cache#
ingest_cache.clear()