Weaviate Vector Store - Hybrid Search#
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-vector-stores-weaviate
!pip install llama-index
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
Creating a Weaviate Client#
import weaviate
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
# Connect to cloud instance
# client = weaviate.Client("https://<cluster-id>.semi.network/", auth_client_secret=resource_owner_config)
# Connect to local instance
client = weaviate.Client("http://localhost:8080")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from llama_index.core.response.notebook_utils import display_response
Download Data#
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Load documents#
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
Build the VectorStoreIndex with WeaviateVectorStore#
from llama_index.core import StorageContext
vector_store = WeaviateVectorStore(weaviate_client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# NOTE: you may also choose to define a index_name manually.
# index_name = "test_prefix"
# vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
Query Index with Default Vector Search#
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(similarity_top_k=2)
response = query_engine.query("What did the author do growing up?")
display_response(response)
Query Index with Hybrid Search#
Use hybrid search with bm25 and vector.
alpha
parameter determines weighting (alpha = 0 -> bm25, alpha=1 -> vector search).
By default, alpha=0.75
is used (very similar to vector search)#
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid", similarity_top_k=2
)
response = query_engine.query(
"What did the author do growing up?",
)
display_response(response)
Set alpha=0.
to favor bm25#
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid", similarity_top_k=2, alpha=0.0
)
response = query_engine.query(
"What did the author do growing up?",
)
display_response(response)