Open In Colab

Lantern Vector Store#

In this notebook we are going to show how to use Postgresql and Lantern to perform vector searches in LlamaIndex

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.

%pip install llama-index-vector-stores-lantern
%pip install llama-index-embeddings-openai
!pip install psycopg2-binary llama-index asyncpg 
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lantern import LanternVectorStore
import textwrap
import openai

Setup OpenAI#

The first step is to configure the openai key. It will be used to created embeddings for the documents loaded into the index

import os

os.environ["OPENAI_API_KEY"] = "<your_key>"
openai.api_key = "<your_key>"

Download Data

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'

Loading documents#

Load the documents stored in the data/paul_graham/ using the SimpleDirectoryReader

documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)

Create the Database#

Using an existing postgres running at localhost, create the database we’ll be using.

import psycopg2

connection_string = "postgresql://postgres:postgres@localhost:5432"
db_name = "postgres"
conn = psycopg2.connect(connection_string)
conn.autocommit = True

with conn.cursor() as c:
    c.execute(f"DROP DATABASE IF EXISTS {db_name}")
    c.execute(f"CREATE DATABASE {db_name}")
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings

# Setup global settings with embedding model
# So query strings will be transformed to embeddings and HNSW index will be used
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")

Create the index#

Here we create an index backed by Postgres using the documents loaded previously. LanternVectorStore takes a few arguments.

from sqlalchemy import make_url

url = make_url(connection_string)
vector_store = LanternVectorStore.from_params(
    database=db_name,
    host=url.host,
    password=url.password,
    port=url.port,
    user=url.username,
    table_name="paul_graham_essay",
    embed_dim=1536,  # openai embedding dimension
)

storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, show_progress=True
)
query_engine = index.as_query_engine()

Query the index#

We can now ask questions using our index.

response = query_engine.query("What did the author do?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("What happened in the mid 1980s?")
print(textwrap.fill(str(response), 100))

Querying existing index#

vector_store = LanternVectorStore.from_params(
    database=db_name,
    host=url.host,
    password=url.password,
    port=url.port,
    user=url.username,
    table_name="paul_graham_essay",
    embed_dim=1536,  # openai embedding dimension
    m=16,  # HNSW M parameter
    ef_construction=128,  # HNSW ef construction parameter
    ef=64,  # HNSW ef search parameter
)

# Read more about HNSW parameters here: https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md

index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do?")
print(textwrap.fill(str(response), 100))