Token Counting Handler#
This notebook walks through how to use the TokenCountingHandler and how it can be used to track your prompt, completion, and embedding token usage over time.
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-llms-openai
!pip install llama-index
Setup#
Here, we setup the callback and the serivce context. We set global settings so that we don’t have to worry about passing it into indexes and queries.
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import tiktoken
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
token_counter = TokenCountingHandler(
tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode
)
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2)
Settings.callback_manager = CallbackManager([token_counter])
Token Counting#
The token counter will track embedding, prompt, and completion token usage. The token counts are cummulative and are only reset when you choose to do so, with token_counter.reset_counts()
.
Embedding Token Usage#
Now that the settings is setup, let’s track our embedding token usage.
Download Data#
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(documents)
print(token_counter.total_embedding_token_count)
20723
That looks right! Before we go any further, lets reset the counts
token_counter.reset_counts()
LLM + Embedding Token Usage#
Next, let’s test a query and see what the counts look like.
query_engine = index.as_query_engine(similarity_top_k=4)
response = query_engine.query("What did the author do growing up?")
print(
"Embedding Tokens: ",
token_counter.total_embedding_token_count,
"\n",
"LLM Prompt Tokens: ",
token_counter.prompt_llm_token_count,
"\n",
"LLM Completion Tokens: ",
token_counter.completion_llm_token_count,
"\n",
"Total LLM Token Count: ",
token_counter.total_llm_token_count,
"\n",
)
Embedding Tokens: 8
LLM Prompt Tokens: 4518
LLM Completion Tokens: 45
Total LLM Token Count: 4563
Token Counting + Streaming!#
The token counting handler also handles token counting during streaming.
Here, token counting will only happen once the stream is completed.
token_counter.reset_counts()
query_engine = index.as_query_engine(similarity_top_k=4, streaming=True)
response = query_engine.query("What happened at Interleaf?")
# finish the stream
for token in response.response_gen:
# print(token, end="", flush=True)
continue
print(
"Embedding Tokens: ",
token_counter.total_embedding_token_count,
"\n",
"LLM Prompt Tokens: ",
token_counter.prompt_llm_token_count,
"\n",
"LLM Completion Tokens: ",
token_counter.completion_llm_token_count,
"\n",
"Total LLM Token Count: ",
token_counter.total_llm_token_count,
"\n",
)
Embedding Tokens: 6
LLM Prompt Tokens: 4563
LLM Completion Tokens: 123
Total LLM Token Count: 4686
Advanced Usage#
The token counter tracks each token usage event in an object called a TokenCountingEvent
. This object has the following attributes:
prompt -> The prompt string sent to the LLM or Embedding model
prompt_token_count -> The token count of the LLM prompt
completion -> The string completion received from the LLM (not used for embeddings)
completion_token_count -> The token count of the LLM completion (not used for embeddings)
total_token_count -> The total prompt + completion tokens for the event
event_id -> A string ID for the event, which aligns with other callback handlers
These events are tracked on the token counter in two lists:
llm_token_counts
embedding_token_counts
Let’s explore what these look like!
print("Num LLM token count events: ", len(token_counter.llm_token_counts))
print(
"Num Embedding token count events: ",
len(token_counter.embedding_token_counts),
)
Num LLM token count events: 2
Num Embedding token count events: 1
This makes sense! The previous query embedded the query text, and then made 2 LLM calls (since the top k was 4, and the default chunk size is 1024, two seperate calls need to be made so the LLM can read all the retrieved text).
Next, let’s quickly see what these events look like for a single event.
print("prompt: ", token_counter.llm_token_counts[0].prompt[:100], "...\n")
print(
"prompt token count: ",
token_counter.llm_token_counts[0].prompt_token_count,
"\n",
)
print(
"completion: ", token_counter.llm_token_counts[0].completion[:100], "...\n"
)
print(
"completion token count: ",
token_counter.llm_token_counts[0].completion_token_count,
"\n",
)
print("total token count", token_counter.llm_token_counts[0].total_token_count)
prompt: system: You are an expert Q&A system that is trusted around the world.
Always answer the query using ...
prompt token count: 3873
completion: assistant: At Interleaf, the company had added a scripting language inspired by Emacs and made it a ...
completion token count: 95
total token count 3968