Metadata Extraction Usage Pattern#
You can use LLMs to automate metadata extraction with our Metadata Extractor
modules.
Our metadata extractor modules include the following “feature extractors”:
SummaryExtractor
- automatically extracts a summary over a set of NodesQuestionsAnsweredExtractor
- extracts a set of questions that each Node can answerTitleExtractor
- extracts a title over the context of each NodeEntityExtractor
- extracts entities (i.e. names of places, people, things) mentioned in the content of each Node
Then you can chain the Metadata Extractor
s with our node parser:
from llama_index.core.extractors import (
TitleExtractor,
QuestionsAnsweredExtractor,
)
from llama_index.core.node_parser import TokenTextSplitter
text_splitter = TokenTextSplitter(
separator=" ", chunk_size=512, chunk_overlap=128
)
title_extractor = TitleExtractor(nodes=5)
qa_extractor = QuestionsAnsweredExtractor(questions=3)
# assume documents are defined -> extract nodes
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(
transformations=[text_splitter, title_extractor, qa_extractor]
)
nodes = pipeline.run(
documents=documents,
in_place=True,
show_progress=True,
)
or insert into an index:
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter, title_extractor, qa_extractor]
)