Weaviate Reader#
%pip install llama-index-readers-weaviate
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
!pip install llama-index
import weaviate
from llama_index.readers.weaviate import WeaviateReader
# See https://weaviate.io/developers/weaviate/current/client-libraries/python.html
# for more details on authentication
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
# initialize reader
reader = WeaviateReader(
"https://<cluster-id>.semi.network/",
auth_client_secret=resource_owner_config,
)
You have two options for the Weaviate reader: 1) directly specify the class_name and properties, or 2) input the raw graphql_query. Examples are shown below.
# 1) load data using class_name and properties
# docs = reader.load_data(
# class_name="Author", properties=["name", "description"], separate_documents=True
# )
documents = reader.load_data(
class_name="<class_name>",
properties=["property1", "property2", "..."],
separate_documents=True,
)
# 2) example GraphQL query
# query = """
# {
# Get {
# Author {
# name
# description
# }
# }
# }
# """
# docs = reader.load_data(graphql_query=query, separate_documents=True)
query = """
{
Get {
<class_name> {
<property1>
<property2>
...
}
}
}
"""
documents = reader.load_data(graphql_query=query, separate_documents=True)
Create index#
index = SummaryIndex.from_documents(documents)
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))