Supabase Vector Store#
In this notebook we are going to show how to use Vecs to perform vector searches in LlamaIndex.
See this guide for instructions on hosting a database on Supabase
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-vector-stores-supabase
!pip install llama-index
import logging
import sys
# Uncomment to see debug logs
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.supabase import SupabaseVectorStore
import textwrap
Setup OpenAI#
The first step is to configure the OpenAI key. It will be used to created embeddings for the documents loaded into the index
import os
os.environ["OPENAI_API_KEY"] = "[your_openai_api_key]"
Download Data
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Loading documents#
Load the documents stored in the ./data/paul_graham/
using the SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].doc_hash,
)
Document ID: fb056993-ee9e-4463-80b4-32cf9509d1d8 Document Hash: 77ae91ab542f3abb308c4d7c77c9bc4c9ad0ccd63144802b7cbe7e1bb3a4094e
Create an index backed by Supabase’s vector store.#
This will work with all Postgres providers that support pgvector. If the collection does not exist, we will attempt to create a new collection
Note: you need to pass in the embedding dimension if not using OpenAI’s text-embedding-ada-002, e.g.
vector_store = SupabaseVectorStore(..., dimension=...)
vector_store = SupabaseVectorStore(
postgres_connection_string=(
"postgresql://<user>:<password>@<host>:<port>/<db_name>"
),
collection_name="base_demo",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
Query the index#
We can now ask questions using our index.
query_engine = index.as_query_engine()
response = query_engine.query("Who is the author?")
/Users/suo/miniconda3/envs/llama/lib/python3.9/site-packages/vecs/collection.py:182: UserWarning: Query does not have a covering index for cosine_distance. See Collection.create_index
warnings.warn(
print(textwrap.fill(str(response), 100))
The author of this text is Paul Graham.
response = query_engine.query("What did the author do growing up?")
print(textwrap.fill(str(response), 100))
The author grew up writing essays, learning Italian, exploring Florence, painting people, working
with computers, attending RISD, living in a rent-stabilized apartment, building an online store
builder, editing Lisp expressions, publishing essays online, writing essays, painting still life,
working on spam filters, cooking for groups, and buying a building in Cambridge.
Using metadata filters#
from llama_index.core.schema import TextNode
nodes = [
TextNode(
**{
"text": "The Shawshank Redemption",
"metadata": {
"author": "Stephen King",
"theme": "Friendship",
},
}
),
TextNode(
**{
"text": "The Godfather",
"metadata": {
"director": "Francis Ford Coppola",
"theme": "Mafia",
},
}
),
TextNode(
**{
"text": "Inception",
"metadata": {
"director": "Christopher Nolan",
},
}
),
]
vector_store = SupabaseVectorStore(
postgres_connection_string=(
"postgresql://<user>:<password>@<host>:<port>/<db_name>"
),
collection_name="metadata_filters_demo",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
Define metadata filters
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[ExactMatchFilter(key="theme", value="Mafia")]
)
Retrieve from vector store with filters
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
[NodeWithScore(node=Node(text='The Godfather', doc_id='f837ed85-aacb-4552-b88a-7c114a5be15d', embedding=None, doc_hash='f8ee912e238a39fe2e620fb232fa27ade1e7f7c819b6d5b9cb26f3dddc75b6c0', extra_info={'theme': 'Mafia', 'director': 'Francis Ford Coppola'}, node_info={'_node_type': '1'}, relationships={}), score=0.20671339734643313)]