Finetuning an Adapter on Top of any Black-Box Embedding Model#
We have capabilities in LlamaIndex allowing you to fine-tune an adapter on top of embeddings produced from any model (sentence_transformers, OpenAI, and more).
This allows you to transform your embedding representations into a new latent space thatβs optimized for retrieval over your specific data and queries. This can lead to small increases in retrieval performance that in turn translate to better performing RAG systems.
We do this via our EmbeddingAdapterFinetuneEngine
abstraction. We fine-tune three types of adapters:
Linear
2-Layer NN
Custom NN
Generate Corpus#
We use our helper abstractions, generate_qa_embedding_pairs
, to generate our training and evaluation dataset. This function takes in any set of text nodes (chunks) and generates a structured dataset containing (question, context) pairs.
%pip install llama-index-embeddings-openai
%pip install llama-index-embeddings-adapter
%pip install llama-index-finetuning
import json
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import MetadataMode
Download Data
!mkdir -p 'data/10k/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'
TRAIN_FILES = ["./data/10k/lyft_2021.pdf"]
VAL_FILES = ["./data/10k/uber_2021.pdf"]
TRAIN_CORPUS_FPATH = "./data/train_corpus.json"
VAL_CORPUS_FPATH = "./data/val_corpus.json"
def load_corpus(files, verbose=False):
if verbose:
print(f"Loading files {files}")
reader = SimpleDirectoryReader(input_files=files)
docs = reader.load_data()
if verbose:
print(f"Loaded {len(docs)} docs")
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)
if verbose:
print(f"Parsed {len(nodes)} nodes")
return nodes
We do a very naive train/val split by having the Lyft corpus as the train dataset, and the Uber corpus as the val dataset.
train_nodes = load_corpus(TRAIN_FILES, verbose=True)
val_nodes = load_corpus(VAL_FILES, verbose=True)
Loading files ['../../../examples/data/10k/lyft_2021.pdf']
Loaded 238 docs
Parsed 349 nodes
Loading files ['../../../examples/data/10k/uber_2021.pdf']
Loaded 307 docs
Parsed 418 nodes
Generate synthetic queries#
Now, we use an LLM (gpt-3.5-turbo) to generate questions using each text chunk in the corpus as context.
Each pair of (generated question, text chunk used as context) becomes a datapoint in the finetuning dataset (either for training or evaluation).
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
train_dataset = generate_qa_embedding_pairs(train_nodes)
val_dataset = generate_qa_embedding_pairs(val_nodes)
train_dataset.save_json("train_dataset.json")
val_dataset.save_json("val_dataset.json")
# [Optional] Load
train_dataset = EmbeddingQAFinetuneDataset.from_json("train_dataset.json")
val_dataset = EmbeddingQAFinetuneDataset.from_json("val_dataset.json")
Run Embedding Finetuning#
We then fine-tune our linear adapter on top of an existing embedding model. We import our new EmbeddingAdapterFinetuneEngine
abstraction, which takes in an existing embedding model and a set of training parameters.
Fine-tune bge-small-en (default)#
from llama_index.finetuning import EmbeddingAdapterFinetuneEngine
from llama_index.core.embeddings import resolve_embed_model
import torch
base_embed_model = resolve_embed_model("local:BAAI/bge-small-en")
finetune_engine = EmbeddingAdapterFinetuneEngine(
train_dataset,
base_embed_model,
model_output_path="model_output_test",
# bias=True,
epochs=4,
verbose=True,
# optimizer_class=torch.optim.SGD,
# optimizer_params={"lr": 0.01}
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
# alternatively import model
from llama_index.core.embeddings import LinearAdapterEmbeddingModel
# embed_model = LinearAdapterEmbeddingModel(base_embed_model, "model_output_test")
Evaluate Finetuned Model#
We compare the fine-tuned model against the base model, as well as against text-embedding-ada-002.
We evaluate with two ranking metrics:
Hit-rate metric: For each (query, context) pair, we retrieve the top-k documents with the query. Itβs a hit if the results contain the ground-truth context.
Mean Reciprocal Rank: A slightly more granular ranking metric that looks at the βreciprocal rankβ of the ground-truth context in the top-k retrieved set. The reciprocal rank is defined as 1/rank. Of course, if the results donβt contain the context, then the reciprocal rank is 0.
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from tqdm.notebook import tqdm
import pandas as pd
from eval_utils import evaluate, display_results
ada = OpenAIEmbedding()
ada_val_results = evaluate(val_dataset, ada)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [03:03<00:00, 4.30it/s]
display_results(["ada"], [ada_val_results])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ada | 0.870886 | 0.72884 |
bge = "local:BAAI/bge-small-en"
bge_val_results = evaluate(val_dataset, bge)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [00:23<00:00, 33.76it/s]
display_results(["bge"], [bge_val_results])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | bge | 0.787342 | 0.643038 |
ft_val_results = evaluate(val_dataset, embed_model)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [00:21<00:00, 36.95it/s]
display_results(["ft"], [ft_val_results])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ft | 0.798734 | 0.662152 |
Here we show all the results concatenated together.
display_results(
["ada", "bge", "ft"], [ada_val_results, bge_val_results, ft_val_results]
)
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ada | 0.870886 | 0.730105 |
1 | bge | 0.787342 | 0.643038 |
2 | ft | 0.798734 | 0.662152 |
Fine-tune a Two-Layer Adapter#
Letβs try fine-tuning a two-layer NN as well!
Itβs a simple two-layer NN with a ReLU activation and a residual layer at the end.
We train for 25 epochs - longer than the linear adapter - and preserve checkpoints every 100 steps.
# requires torch dependency
from llama_index.core.embeddings.adapter_utils import TwoLayerNN
from llama_index.finetuning import EmbeddingAdapterFinetuneEngine
from llama_index.core.embeddings import resolve_embed_model
from llama_index.embeddings.adapter import AdapterEmbeddingModel
base_embed_model = resolve_embed_model("local:BAAI/bge-small-en")
adapter_model = TwoLayerNN(
384, # input dimension
1024, # hidden dimension
384, # output dimension
bias=True,
add_residual=True,
)
finetune_engine = EmbeddingAdapterFinetuneEngine(
train_dataset,
base_embed_model,
model_output_path="model5_output_test",
model_checkpoint_path="model5_ck",
adapter_model=adapter_model,
epochs=25,
verbose=True,
)
finetune_engine.finetune()
embed_model_2layer = finetune_engine.get_finetuned_model(
adapter_cls=TwoLayerNN
)
Evaluation Results#
Run the same evaluation script used in the previous section to measure hit-rate/MRR within the two-layer model.
# load model from checkpoint in the midde
embed_model_2layer = AdapterEmbeddingModel(
base_embed_model,
"model5_output_test",
TwoLayerNN,
)
from eval_utils import evaluate, display_results
ft_val_results_2layer = evaluate(val_dataset, embed_model_2layer)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [00:21<00:00, 36.93it/s]
# comment out if you haven't run ada/bge yet
display_results(
["ada", "bge", "ft_2layer"],
[ada_val_results, bge_val_results, ft_val_results_2layer],
)
# uncomment if you just want to display the fine-tuned model's results
# display_results(["ft_2layer"], [ft_val_results_2layer])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ada | 0.870886 | 0.728840 |
1 | bge | 0.787342 | 0.643038 |
2 | ft_2layer | 0.798734 | 0.662848 |
# load model from checkpoint in the midde
embed_model_2layer_s900 = AdapterEmbeddingModel(
base_embed_model,
"model5_ck/step_900",
TwoLayerNN,
)
ft_val_results_2layer_s900 = evaluate(val_dataset, embed_model_2layer_s900)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [00:19<00:00, 40.57it/s]
# comment out if you haven't run ada/bge yet
display_results(
["ada", "bge", "ft_2layer_s900"],
[ada_val_results, bge_val_results, ft_val_results_2layer_s900],
)
# uncomment if you just want to display the fine-tuned model's results
# display_results(["ft_2layer_s900"], [ft_val_results_2layer_s900])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ada | 0.870886 | 0.728840 |
1 | bge | 0.787342 | 0.643038 |
2 | ft_2layer_s900 | 0.803797 | 0.667426 |
Try Your Own Custom Model#
You can define your own custom adapter here! Simply subclass BaseAdapter
, which is a light wrapper around the nn.Module
class.
You just need to subclass forward
and get_config_dict
.
Just make sure youβre familiar with writing PyTorch
code :)
from llama_index.core.embeddings.adapter_utils import BaseAdapter
import torch.nn.functional as F
from torch import nn, Tensor
from typing import Dict
class CustomNN(BaseAdapter):
"""Custom NN transformation.
Is a copy of our TwoLayerNN, showing it here for notebook purposes.
Args:
in_features (int): Input dimension.
hidden_features (int): Hidden dimension.
out_features (int): Output dimension.
bias (bool): Whether to use bias. Defaults to False.
activation_fn_str (str): Name of activation function. Defaults to "relu".
"""
def __init__(
self,
in_features: int,
hidden_features: int,
out_features: int,
bias: bool = False,
add_residual: bool = False,
) -> None:
super(CustomNN, self).__init__()
self.in_features = in_features
self.hidden_features = hidden_features
self.out_features = out_features
self.bias = bias
self.linear1 = nn.Linear(in_features, hidden_features, bias=True)
self.linear2 = nn.Linear(hidden_features, out_features, bias=True)
self._add_residual = add_residual
# if add_residual, then add residual_weight (init to 0)
self.residual_weight = nn.Parameter(torch.zeros(1))
def forward(self, embed: Tensor) -> Tensor:
"""Forward pass (Wv).
Args:
embed (Tensor): Input tensor.
"""
output1 = self.linear1(embed)
output1 = F.relu(output1)
output2 = self.linear2(output1)
if self._add_residual:
output2 = self.residual_weight * output2 + embed
return output2
def get_config_dict(self) -> Dict:
"""Get config dict."""
return {
"in_features": self.in_features,
"hidden_features": self.hidden_features,
"out_features": self.out_features,
"bias": self.bias,
"add_residual": self._add_residual,
}
custom_adapter = CustomNN(
384, # input dimension
1024, # hidden dimension
384, # output dimension
bias=True,
add_residual=True,
)
finetune_engine = EmbeddingAdapterFinetuneEngine(
train_dataset,
base_embed_model,
model_output_path="custom_model_output",
model_checkpoint_path="custom_model_ck",
adapter_model=custom_adapter,
epochs=25,
verbose=True,
)
finetune_engine.finetune()
embed_model_custom = finetune_engine.get_finetuned_model(
adapter_cls=CustomAdapter
)
Evaluation Results#
Run the same evaluation script used in the previous section to measure hit-rate/MRR.
# [optional] load model manually
# embed_model_custom = AdapterEmbeddingModel(
# base_embed_model,
# "custom_model_ck/step_300",
# TwoLayerNN,
# )
from eval_utils import evaluate, display_results
ft_val_results_custom = evaluate(val_dataset, embed_model_custom)
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 790/790 [00:20<00:00, 37.77it/s]
display_results(["ft_custom"]x, [ft_val_results_custom])
retrievers | hit_rate | mrr | |
---|---|---|---|
0 | ft_custom | 0.789873 | 0.645127 |