Skip to content

Milvus

MilvusVectorStore #

Bases: BasePydanticVectorStore

The Milvus Vector Store.

In this vector store we store the text, its embedding and a its metadata in a Milvus collection. This implementation allows the use of an already existing collection. It also supports creating a new one if the collection doesn't exist or if overwrite is set to True.

Parameters:

Name Type Description Default
uri str

The URI to connect to, comes in the form of "https://address:port" for Milvus or Zilliz Cloud service, or "path/to/local/milvus.db" for the lite local Milvus. Defaults to "./milvus_llamaindex.db".

'./milvus_llamaindex.db'
token str

The token for log in. Empty if not using rbac, if using rbac it will most likely be "username:password".

''
collection_name str

The name of the collection where data will be stored. Defaults to "llamalection".

'llamacollection'
dim int

The dimension of the embedding vectors for the collection. Required if creating a new collection.

None
embedding_field str

The name of the embedding field for the collection, defaults to DEFAULT_EMBEDDING_KEY.

DEFAULT_EMBEDDING_KEY
doc_id_field str

The name of the doc_id field for the collection, defaults to DEFAULT_DOC_ID_KEY.

DEFAULT_DOC_ID_KEY
similarity_metric str

The similarity metric to use, currently supports IP, COSINE and L2.

'IP'
consistency_level str

Which consistency level to use for a newly created collection. Defaults to "Session".

'Session'
overwrite bool

Whether to overwrite existing collection with same name. Defaults to False.

False
text_key str

What key text is stored in in the passed collection. Used when bringing your own collection. Defaults to None.

None
index_config dict

The configuration used for building the Milvus index. Defaults to None.

None
search_config dict

The configuration used for searching the Milvus index. Note that this must be compatible with the index type specified by index_config. Defaults to None.

None
collection_properties dict

The collection properties such as TTL (Time-To-Live) and MMAP (memory mapping). Defaults to None. It could include: - 'collection.ttl.seconds' (int): Once this property is set, data in the current collection expires in the specified time. Expired data in the collection will be cleaned up and will not be involved in searches or queries. - 'mmap.enabled' (bool): Whether to enable memory-mapped storage at the collection level.

None
batch_size int

Configures the number of documents processed in one batch when inserting data into Milvus. Defaults to DEFAULT_BATCH_SIZE.

DEFAULT_BATCH_SIZE
enable_sparse bool

A boolean flag indicating whether to enable support for sparse embeddings for hybrid retrieval. Defaults to False.

False
sparse_embedding_function BaseSparseEmbeddingFunction

If enable_sparse is True, this object should be provided to convert text to a sparse embedding.

None
hybrid_ranker str

Specifies the type of ranker used in hybrid search queries. Currently only supports ['RRFRanker','WeightedRanker']. Defaults to "RRFRanker".

'RRFRanker'
hybrid_ranker_params dict

Configuration parameters for the hybrid ranker. The structure of this dictionary depends on the specific ranker being used: - For "RRFRanker", it should include: - 'k' (int): A parameter used in Reciprocal Rank Fusion (RRF). This value is used to calculate the rank scores as part of the RRF algorithm, which combines multiple ranking strategies into a single score to improve search relevance. - For "WeightedRanker", it expects: - 'weights' (list of float): A list of exactly two weights: 1. The weight for the dense embedding component. 2. The weight for the sparse embedding component. These weights are used to adjust the importance of the dense and sparse components of the embeddings in the hybrid retrieval process. Defaults to an empty dictionary, implying that the ranker will operate with its predefined default settings.

{}
index_management IndexManagement

Specifies the index management strategy to use. Defaults to "create_if_not_exists".

CREATE_IF_NOT_EXISTS
scalar_field_names list

The names of the extra scalar fields to be included in the collection schema.

None
scalar_field_types list

The types of the extra scalar fields.

None

Raises:

Type Description
ImportError

Unable to import pymilvus.

MilvusException

Error communicating with Milvus, more can be found in logging under Debug.

Returns:

Name Type Description
MilvusVectorstore

Vectorstore that supports add, delete, and query.

Examples:

pip install llama-index-vector-stores-milvus

from llama_index.vector_stores.milvus import MilvusVectorStore

# Setup MilvusVectorStore
vector_store = MilvusVectorStore(
    dim=1536,
    collection_name="your_collection_name",
    uri="http://milvus_address:port",
    token="your_milvus_token_here",
    overwrite=True
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
class MilvusVectorStore(BasePydanticVectorStore):
    """The Milvus Vector Store.

    In this vector store we store the text, its embedding and
    a its metadata in a Milvus collection. This implementation
    allows the use of an already existing collection.
    It also supports creating a new one if the collection doesn't
    exist or if `overwrite` is set to True.

    Args:
        uri (str, optional): The URI to connect to, comes in the form of
            "https://address:port" for Milvus or Zilliz Cloud service,
            or "path/to/local/milvus.db" for the lite local Milvus. Defaults to
            "./milvus_llamaindex.db".
        token (str, optional): The token for log in. Empty if not using rbac, if
            using rbac it will most likely be "username:password".
        collection_name (str, optional): The name of the collection where data will be
            stored. Defaults to "llamalection".
        dim (int, optional): The dimension of the embedding vectors for the collection.
            Required if creating a new collection.
        embedding_field (str, optional): The name of the embedding field for the
            collection, defaults to DEFAULT_EMBEDDING_KEY.
        doc_id_field (str, optional): The name of the doc_id field for the collection,
            defaults to DEFAULT_DOC_ID_KEY.
        similarity_metric (str, optional): The similarity metric to use,
            currently supports IP, COSINE and L2.
        consistency_level (str, optional): Which consistency level to use for a newly
            created collection. Defaults to "Session".
        overwrite (bool, optional): Whether to overwrite existing collection with same
            name. Defaults to False.
        text_key (str, optional): What key text is stored in in the passed collection.
            Used when bringing your own collection. Defaults to None.
        index_config (dict, optional): The configuration used for building the
            Milvus index. Defaults to None.
        search_config (dict, optional): The configuration used for searching
            the Milvus index. Note that this must be compatible with the index
            type specified by `index_config`. Defaults to None.
        collection_properties (dict, optional): The collection properties such as TTL
            (Time-To-Live) and MMAP (memory mapping). Defaults to None.
            It could include:
            - 'collection.ttl.seconds' (int): Once this property is set, data in the
                current collection expires in the specified time. Expired data in the
                collection will be cleaned up and will not be involved in searches or queries.
            - 'mmap.enabled' (bool): Whether to enable memory-mapped storage at the collection level.
        batch_size (int): Configures the number of documents processed in one
            batch when inserting data into Milvus. Defaults to DEFAULT_BATCH_SIZE.
        enable_sparse (bool): A boolean flag indicating whether to enable support
            for sparse embeddings for hybrid retrieval. Defaults to False.
        sparse_embedding_function (BaseSparseEmbeddingFunction, optional): If enable_sparse
             is True, this object should be provided to convert text to a sparse embedding.
        hybrid_ranker (str): Specifies the type of ranker used in hybrid search queries.
            Currently only supports ['RRFRanker','WeightedRanker']. Defaults to "RRFRanker".
        hybrid_ranker_params (dict, optional): Configuration parameters for the hybrid ranker.
            The structure of this dictionary depends on the specific ranker being used:
            - For "RRFRanker", it should include:
                - 'k' (int): A parameter used in Reciprocal Rank Fusion (RRF). This value is used
                             to calculate the rank scores as part of the RRF algorithm, which combines
                             multiple ranking strategies into a single score to improve search relevance.
            - For "WeightedRanker", it expects:
                - 'weights' (list of float): A list of exactly two weights:
                     1. The weight for the dense embedding component.
                     2. The weight for the sparse embedding component.
                  These weights are used to adjust the importance of the dense and sparse components of the embeddings
                  in the hybrid retrieval process.
            Defaults to an empty dictionary, implying that the ranker will operate with its predefined default settings.
        index_management (IndexManagement): Specifies the index management strategy to use. Defaults to "create_if_not_exists".
        scalar_field_names (list): The names of the extra scalar fields to be included in the collection schema.
        scalar_field_types (list): The types of the extra scalar fields.

    Raises:
        ImportError: Unable to import `pymilvus`.
        MilvusException: Error communicating with Milvus, more can be found in logging
            under Debug.

    Returns:
        MilvusVectorstore: Vectorstore that supports add, delete, and query.

    Examples:
        `pip install llama-index-vector-stores-milvus`

        ```python
        from llama_index.vector_stores.milvus import MilvusVectorStore

        # Setup MilvusVectorStore
        vector_store = MilvusVectorStore(
            dim=1536,
            collection_name="your_collection_name",
            uri="http://milvus_address:port",
            token="your_milvus_token_here",
            overwrite=True
        )
        ```
    """

    stores_text: bool = True
    stores_node: bool = True

    uri: str = "./milvus_llamaindex.db"
    token: str = ""
    collection_name: str = "llamacollection"
    dim: Optional[int]
    embedding_field: str = DEFAULT_EMBEDDING_KEY
    doc_id_field: str = DEFAULT_DOC_ID_KEY
    similarity_metric: str = "IP"
    consistency_level: str = "Session"
    overwrite: bool = False
    text_key: Optional[str]
    output_fields: List[str] = Field(default_factory=list)
    index_config: Optional[dict]
    search_config: Optional[dict]
    collection_properties: Optional[dict]
    batch_size: int = DEFAULT_BATCH_SIZE
    enable_sparse: bool = False
    sparse_embedding_field: str = "sparse_embedding"
    sparse_embedding_function: Any
    hybrid_ranker: str
    hybrid_ranker_params: dict = {}
    index_management: IndexManagement = IndexManagement.CREATE_IF_NOT_EXISTS
    scalar_field_names: Optional[List[str]]
    scalar_field_types: Optional[List[DataType]]

    _milvusclient: MilvusClient = PrivateAttr()
    _collection: Any = PrivateAttr()

    def __init__(
        self,
        uri: str = "./milvus_llamaindex.db",
        token: str = "",
        collection_name: str = "llamacollection",
        dim: Optional[int] = None,
        embedding_field: str = DEFAULT_EMBEDDING_KEY,
        doc_id_field: str = DEFAULT_DOC_ID_KEY,
        similarity_metric: str = "IP",
        consistency_level: str = "Session",
        overwrite: bool = False,
        text_key: Optional[str] = None,
        output_fields: Optional[List[str]] = None,
        index_config: Optional[dict] = None,
        search_config: Optional[dict] = None,
        collection_properties: Optional[dict] = None,
        batch_size: int = DEFAULT_BATCH_SIZE,
        enable_sparse: bool = False,
        sparse_embedding_function: Optional[BaseSparseEmbeddingFunction] = None,
        hybrid_ranker: str = "RRFRanker",
        hybrid_ranker_params: dict = {},
        index_management: IndexManagement = IndexManagement.CREATE_IF_NOT_EXISTS,
        scalar_field_names: Optional[List[str]] = None,
        scalar_field_types: Optional[List[DataType]] = None,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        super().__init__(
            collection_name=collection_name,
            dim=dim,
            embedding_field=embedding_field,
            doc_id_field=doc_id_field,
            consistency_level=consistency_level,
            overwrite=overwrite,
            text_key=text_key,
            output_fields=output_fields or [],
            index_config=index_config if index_config else {},
            search_config=search_config if search_config else {},
            collection_properties=collection_properties,
            batch_size=batch_size,
            enable_sparse=enable_sparse,
            sparse_embedding_function=sparse_embedding_function,
            hybrid_ranker=hybrid_ranker,
            hybrid_ranker_params=hybrid_ranker_params,
            index_management=index_management,
            scalar_field_names=scalar_field_names,
            scalar_field_types=scalar_field_types,
        )

        # Select the similarity metric
        similarity_metrics_map = {
            "ip": "IP",
            "l2": "L2",
            "euclidean": "L2",
            "cosine": "COSINE",
        }
        self.similarity_metric = similarity_metrics_map.get(
            similarity_metric.lower(), "L2"
        )
        # Connect to Milvus instance
        self._milvusclient = MilvusClient(
            uri=uri,
            token=token,
            **kwargs,  # pass additional arguments such as server_pem_path
        )
        # Delete previous collection if overwriting
        if overwrite and collection_name in self.client.list_collections():
            self._milvusclient.drop_collection(collection_name)

        # Create the collection if it does not exist
        if collection_name not in self.client.list_collections():
            if dim is None:
                raise ValueError("Dim argument required for collection creation.")
            if self.enable_sparse is False:
                # Check if custom index should be created
                if (
                    index_config is not None
                    and self.index_management is not IndexManagement.NO_VALIDATION
                ):
                    try:
                        # Prepare index
                        index_params = self.client.prepare_index_params()
                        index_type = index_config["index_type"]
                        index_params.add_index(
                            field_name=embedding_field,
                            index_type=index_type,
                            metric_type=self.similarity_metric,
                        )

                        # Create a schema according to LlamaIndex Schema.
                        schema = self._create_schema()
                        schema.verify()

                        # Using private method exposed by pymilvus client, in order to avoid creating indexes twice
                        # Reason: create_collection in pymilvus only checks schema and ignores index_config setup
                        # https://github.com/milvus-io/pymilvus/issues/2265
                        self.client._create_collection_with_schema(
                            collection_name=collection_name,
                            schema=schema,
                            index_params=index_params,
                            dimemsion=dim,
                            primary_field=MILVUS_ID_FIELD,
                            vector_field=embedding_field,
                            id_type="string",
                            max_length=65_535,
                            consistency_level=consistency_level,
                        )
                        self._collection = Collection(
                            collection_name, using=self._milvusclient._using
                        )
                    except Exception as e:
                        logger.error("Error creating collection with index_config")
                        raise NotImplementedError(
                            "Error creating collection with index_config"
                        ) from e
                else:
                    self._milvusclient.create_collection(
                        collection_name=collection_name,
                        dimension=dim,
                        primary_field_name=MILVUS_ID_FIELD,
                        vector_field_name=embedding_field,
                        id_type="string",
                        metric_type=self.similarity_metric,
                        max_length=65_535,
                        consistency_level=consistency_level,
                    )
                    self._collection = Collection(
                        collection_name, using=self._milvusclient._using
                    )

                    # Check if we have to create an index here to avoid duplicity of indexes
                    self._create_index_if_required()
            else:
                try:
                    _ = DataType.SPARSE_FLOAT_VECTOR
                except Exception as e:
                    logger.error(
                        "Hybrid retrieval is only supported in Milvus 2.4.0 or later."
                    )
                    raise NotImplementedError(
                        "Hybrid retrieval requires Milvus 2.4.0 or later."
                    ) from e
                self._create_hybrid_index(collection_name)
        else:
            self._collection = Collection(
                collection_name, using=self._milvusclient._using
            )

        # Set properties
        if collection_properties:
            if self._milvusclient.get_load_state(collection_name) == LoadState.Loaded:
                self._collection.release()
                self._collection.set_properties(properties=collection_properties)
                self._collection.load()
            else:
                self._collection.set_properties(properties=collection_properties)

        self.enable_sparse = enable_sparse
        if self.enable_sparse is True and sparse_embedding_function is None:
            logger.warning("Sparse embedding function is not provided, using default.")
            self.sparse_embedding_function = get_default_sparse_embedding_function()
        elif self.enable_sparse is True and sparse_embedding_function is not None:
            self.sparse_embedding_function = sparse_embedding_function
        else:
            pass

        logger.debug(f"Successfully created a new collection: {self.collection_name}")

    @property
    def client(self) -> Any:
        """Get client."""
        return self._milvusclient

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """Add the embeddings and their nodes into Milvus.

        Args:
            nodes (List[BaseNode]): List of nodes with embeddings
                to insert.

        Raises:
            MilvusException: Failed to insert data.

        Returns:
            List[str]: List of ids inserted.
        """
        insert_list = []
        insert_ids = []

        if self.enable_sparse is True and self.sparse_embedding_function is None:
            logger.fatal(
                "sparse_embedding_function is None when enable_sparse is True."
            )

        # Process that data we are going to insert
        for node in nodes:
            entry = node_to_metadata_dict(node)
            entry[MILVUS_ID_FIELD] = node.node_id
            entry[self.embedding_field] = node.embedding

            if self.enable_sparse is True:
                entry[
                    self.sparse_embedding_field
                ] = self.sparse_embedding_function.encode_documents([node.text])[0]

            insert_ids.append(node.node_id)
            insert_list.append(entry)

        # Insert the data into milvus
        for insert_batch in iter_batch(insert_list, self.batch_size):
            self._collection.insert(insert_batch)
        if add_kwargs.get("force_flush", False):
            self._collection.flush()
        logger.debug(
            f"Successfully inserted embeddings into: {self.collection_name} "
            f"Num Inserted: {len(insert_list)}"
        )
        return insert_ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        Raises:
            MilvusException: Failed to delete the doc.
        """
        # Adds ability for multiple doc delete in future.
        doc_ids: List[str]
        if isinstance(ref_doc_id, list):
            doc_ids = ref_doc_id  # type: ignore
        else:
            doc_ids = [ref_doc_id]

        # Begin by querying for the primary keys to delete
        doc_ids = ['"' + entry + '"' for entry in doc_ids]
        entries = self._milvusclient.query(
            collection_name=self.collection_name,
            filter=f"{self.doc_id_field} in [{','.join(doc_ids)}]",
        )
        if len(entries) > 0:
            ids = [entry["id"] for entry in entries]
            self._milvusclient.delete(collection_name=self.collection_name, pks=ids)
            logger.debug(f"Successfully deleted embedding with doc_id: {doc_ids}")

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """Deletes nodes.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.
        """
        filters_cpy = deepcopy(filters) or MetadataFilters(filters=[])

        if node_ids:
            filters_cpy.filters.append(
                MetadataFilter(key="id", value=node_ids, operator=FilterOperator.IN)
            )

        if filters_cpy is not None:
            filter = _to_milvus_filter(filters_cpy)
        else:
            filter = None

        self._milvusclient.delete(
            collection_name=self.collection_name,
            filter=filter,
            **delete_kwargs,
        )
        logger.debug(f"Successfully deleted node_ids: {node_ids}")

    def clear(self) -> None:
        """Clears db."""
        self._milvusclient.drop_collection(self.collection_name)

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> List[BaseNode]:
        """Get nodes by node ids or metadata filters.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to retrieve. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        Raises:
            ValueError: Neither or both of node_ids and filters are provided.

        Returns:
            List[BaseNode]:
        """
        if node_ids is None and filters is None:
            raise ValueError("Either node_ids or filters must be provided.")

        filters_cpy = deepcopy(filters) or MetadataFilters(filters=[])
        milvus_filter = _to_milvus_filter(filters_cpy)

        if node_ids is not None and milvus_filter:
            raise ValueError("Only one of node_ids or filters can be provided.")

        res = self.client.query(
            ids=node_ids, collection_name=self.collection_name, filter=milvus_filter
        )

        nodes = []
        for item in res:
            if not self.text_key:
                node = metadata_dict_to_node(item)
                node.embedding = item.get(self.embedding_field, None)
            else:
                try:
                    text = item.pop(self.text_key)
                except Exception:
                    raise ValueError(
                        "The passed in text_key value does not exist "
                        "in the retrieved entity."
                    ) from None
                embedding = item.pop(self.embedding_field, None)
                node = TextNode(
                    text=text,
                    embedding=embedding,
                    metadata=item,
                )
            nodes.append(node)
        return nodes

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes.

        Args:
            query_embedding (List[float]): query embedding
            similarity_top_k (int): top k most similar nodes
            doc_ids (Optional[List[str]]): list of doc_ids to filter by
            node_ids (Optional[List[str]]): list of node_ids to filter by
            output_fields (Optional[List[str]]): list of fields to return
            embedding_field (Optional[str]): name of embedding field
        """
        if query.mode == VectorStoreQueryMode.DEFAULT:
            pass
        elif query.mode == VectorStoreQueryMode.HYBRID:
            if self.enable_sparse is False:
                raise ValueError(f"QueryMode is HYBRID, but enable_sparse is False.")
        elif query.mode == VectorStoreQueryMode.MMR:
            pass
        else:
            raise ValueError(f"Milvus does not support {query.mode} yet.")

        expr = []
        output_fields = ["*"]

        # Parse the filter

        if query.filters is not None or "milvus_scalar_filters" in kwargs:
            expr.append(
                _to_milvus_filter(
                    query.filters,
                    (
                        kwargs["milvus_scalar_filters"]
                        if "milvus_scalar_filters" in kwargs
                        else None
                    ),
                )
            )

        # Parse any docs we are filtering on
        if query.doc_ids is not None and len(query.doc_ids) != 0:
            expr_list = ['"' + entry + '"' for entry in query.doc_ids]
            expr.append(f"{self.doc_id_field} in [{','.join(expr_list)}]")

        # Parse any nodes we are filtering on
        if query.node_ids is not None and len(query.node_ids) != 0:
            expr_list = ['"' + entry + '"' for entry in query.node_ids]
            expr.append(f"{MILVUS_ID_FIELD} in [{','.join(expr_list)}]")

        # Limit output fields
        outputs_limited = False
        if query.output_fields is not None:
            output_fields = query.output_fields
            outputs_limited = True
        elif len(self.output_fields) > 0:
            output_fields = [*self.output_fields]
            outputs_limited = True

        # Add the text key to output fields if necessary
        if self.text_key and self.text_key not in output_fields and outputs_limited:
            output_fields.append(self.text_key)

        # Convert to string expression
        string_expr = ""
        if len(expr) != 0:
            string_expr = f" and ".join(expr)

        # Perform the search
        if query.mode == VectorStoreQueryMode.DEFAULT:
            # Perform default search
            res = self._milvusclient.search(
                collection_name=self.collection_name,
                data=[query.query_embedding],
                filter=string_expr,
                limit=query.similarity_top_k,
                output_fields=output_fields,
                search_params=self.search_config,
                anns_field=self.embedding_field,
            )
            logger.debug(
                f"Successfully searched embedding in collection: {self.collection_name}"
                f" Num Results: {len(res[0])}"
            )

            nodes = []
            similarities = []
            ids = []
            # Parse the results
            for hit in res[0]:
                if not self.text_key:
                    node = metadata_dict_to_node(
                        {
                            "_node_content": hit["entity"].get("_node_content", None),
                            "_node_type": hit["entity"].get("_node_type", None),
                        }
                    )
                else:
                    try:
                        text = hit["entity"].get(self.text_key)
                    except Exception:
                        raise ValueError(
                            "The passed in text_key value does not exist "
                            "in the retrieved entity."
                        )

                    metadata = {
                        key: hit["entity"].get(key) for key in self.output_fields
                    }
                    node = TextNode(text=text, metadata=metadata)

                nodes.append(node)
                similarities.append(hit["distance"])
                ids.append(hit["id"])

        elif query.mode == VectorStoreQueryMode.MMR:
            # Perform MMR search
            mmr_threshold = kwargs.get("mmr_threshold", None)

            if (
                kwargs.get("mmr_prefetch_factor") is not None
                and kwargs.get("mmr_prefetch_k") is not None
            ):
                raise ValueError(
                    "'mmr_prefetch_factor' and 'mmr_prefetch_k' "
                    "cannot coexist in a call to query()"
                )
            else:
                if kwargs.get("mmr_prefetch_k") is not None:
                    prefetch_k0 = int(kwargs["mmr_prefetch_k"])
                else:
                    prefetch_k0 = int(
                        query.similarity_top_k
                        * kwargs.get("mmr_prefetch_factor", DEFAULT_MMR_PREFETCH_FACTOR)
                    )

            res = self._milvusclient.search(
                collection_name=self.collection_name,
                data=[query.query_embedding],
                filter=string_expr,
                limit=prefetch_k0,
                output_fields=output_fields,
                search_params=self.search_config,
                anns_field=self.embedding_field,
            )

            nodes = res[0]
            node_embeddings = []
            node_ids = []
            for node in nodes:
                node_embeddings.append(node["entity"]["embedding"])
                node_ids.append(node["id"])

            mmr_similarities, mmr_ids = get_top_k_mmr_embeddings(
                query_embedding=query.query_embedding,
                embeddings=node_embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
                mmr_threshold=mmr_threshold,
            )

            node_dict = dict(list(zip(node_ids, nodes)))
            selected_nodes = [node_dict[id] for id in mmr_ids if id in node_dict]

            nodes = []
            # Parse the results
            for hit in selected_nodes:
                if not self.text_key:
                    node = metadata_dict_to_node(
                        {
                            "_node_content": hit["entity"].get("_node_content", None),
                            "_node_type": hit["entity"].get("_node_type", None),
                        }
                    )
                else:
                    try:
                        text = hit["entity"].get(self.text_key)
                    except Exception:
                        raise ValueError(
                            "The passed in text_key value does not exist "
                            "in the retrieved entity."
                        )

                    metadata = {
                        key: hit["entity"].get(key) for key in self.output_fields
                    }
                    node = TextNode(text=text, metadata=metadata)

                nodes.append(node)

            similarities = mmr_similarities  # Passing the MMR similarities instead of the original similarities
            ids = mmr_ids

            logger.debug(
                f"Successfully performed MMR on embeddings in collection: {self.collection_name}"
            )

        else:
            # Perform hybrid search
            sparse_emb = self.sparse_embedding_function.encode_queries(
                [query.query_str]
            )[0]
            sparse_search_params = {"metric_type": "IP"}

            sparse_req = AnnSearchRequest(
                data=[sparse_emb],
                anns_field=self.sparse_embedding_field,
                param=sparse_search_params,
                limit=query.similarity_top_k,
                expr=string_expr,  # Apply metadata filters to sparse search
            )

            dense_search_params = {
                "metric_type": self.similarity_metric,
                "params": self.search_config,
            }
            dense_emb = query.query_embedding
            dense_req = AnnSearchRequest(
                data=[dense_emb],
                anns_field=self.embedding_field,
                param=dense_search_params,
                limit=query.similarity_top_k,
                expr=string_expr,  # Apply metadata filters to dense search
            )
            ranker = None

            if WeightedRanker is None or RRFRanker is None:
                logger.error(
                    "Hybrid retrieval is only supported in Milvus 2.4.0 or later."
                )
                raise ValueError(
                    "Hybrid retrieval is only supported in Milvus 2.4.0 or later."
                )
            if self.hybrid_ranker == "WeightedRanker":
                if self.hybrid_ranker_params == {}:
                    self.hybrid_ranker_params = {"weights": [1.0, 1.0]}
                ranker = WeightedRanker(*self.hybrid_ranker_params["weights"])
            elif self.hybrid_ranker == "RRFRanker":
                if self.hybrid_ranker_params == {}:
                    self.hybrid_ranker_params = {"k": 60}
                ranker = RRFRanker(self.hybrid_ranker_params["k"])
            else:
                raise ValueError(f"Unsupported ranker: {self.hybrid_ranker}")

            res = self._collection.hybrid_search(
                [dense_req, sparse_req],
                rerank=ranker,
                limit=query.similarity_top_k,
                output_fields=output_fields,
            )

            logger.debug(
                f"Successfully searched embedding in collection: {self.collection_name}"
                f" Num Results: {len(res[0])}"
            )

            nodes = []
            similarities = []
            ids = []
            # Parse the results
            for hit in res[0]:
                if not self.text_key:
                    node = metadata_dict_to_node(
                        {
                            "_node_content": hit.entity.get("_node_content"),
                            "_node_type": hit.entity.get("_node_type"),
                        }
                    )
                else:
                    try:
                        text = hit.entity.get(self.text_key)
                    except Exception:
                        raise ValueError(
                            "The passed in text_key value does not exist "
                            "in the retrieved entity."
                        )

                    metadata = {key: hit.entity.get(key) for key in self.output_fields}
                    node = TextNode(text=text, metadata=metadata)

                nodes.append(node)
                similarities.append(hit.distance)
                ids.append(hit.id)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

    def _create_index_if_required(self) -> None:
        """
        Create or validate the index based on the index management strategy.

        This method decides whether to create or validate the index based on
        the specified index management strategy and the current state of the collection.
        """
        if self.index_management == IndexManagement.NO_VALIDATION:
            return

        if self.enable_sparse is False:
            self._create_dense_index()
        else:
            self._create_hybrid_index(self.collection_name)

    def _create_dense_index(self) -> None:
        """
        Create or recreate the dense vector index.

        This method handles the creation of the dense vector index based on
        the current index management strategy and the state of the collection.
        """
        index_exists = self._collection.has_index()

        if (
            not index_exists
            and self.index_management == IndexManagement.CREATE_IF_NOT_EXISTS
        ) or (index_exists and self.overwrite):
            if index_exists:
                self._collection.release()
                self._collection.drop_index()

            base_params: Dict[str, Any] = self.index_config.copy()
            index_type: str = base_params.pop("index_type", "FLAT")
            index_params: Dict[str, Union[str, Dict[str, Any]]] = {
                "params": base_params,
                "metric_type": self.similarity_metric,
                "index_type": index_type,
            }
            self._collection.create_index(
                self.embedding_field, index_params=index_params
            )
            self._collection.load()

    def _create_hybrid_index(self, collection_name: str) -> None:
        """
        Create or recreate the hybrid (dense and sparse) vector index.

        Args:
            collection_name (str): The name of the collection to create the index for.
        """
        # Check if the collection exists, if not, create it
        if collection_name not in self._milvusclient.list_collections():
            schema = MilvusClient.create_schema(
                auto_id=False, enable_dynamic_field=True
            )
            schema.add_field(
                field_name="id",
                datatype=DataType.VARCHAR,
                max_length=65535,
                is_primary=True,
            )
            schema.add_field(
                field_name=self.embedding_field,
                datatype=DataType.FLOAT_VECTOR,
                dim=self.dim,
            )
            schema.add_field(
                field_name=self.sparse_embedding_field,
                datatype=DataType.SPARSE_FLOAT_VECTOR,
            )
            self._milvusclient.create_collection(
                collection_name=collection_name, schema=schema
            )

        # Initialize or get the collection
        self._collection = Collection(collection_name, using=self._milvusclient._using)

        dense_index_exists = self._collection.has_index(index_name=self.embedding_field)
        sparse_index_exists = self._collection.has_index(
            index_name=self.sparse_embedding_field
        )

        if (
            (not dense_index_exists or not sparse_index_exists)
            and self.index_management == IndexManagement.CREATE_IF_NOT_EXISTS
            or (dense_index_exists and sparse_index_exists and self.overwrite)
        ):
            if dense_index_exists:
                self._collection.release()
                self._collection.drop_index(index_name=self.embedding_field)
            if sparse_index_exists:
                self._collection.drop_index(index_name=self.sparse_embedding_field)

            # Create sparse index
            sparse_index = {"index_type": "SPARSE_INVERTED_INDEX", "metric_type": "IP"}
            self._collection.create_index(self.sparse_embedding_field, sparse_index)

            # Create dense index
            base_params = self.index_config.copy()
            index_type = base_params.pop("index_type", "FLAT")
            dense_index = {
                "params": base_params,
                "metric_type": self.similarity_metric,
                "index_type": index_type,
            }
            self._collection.create_index(self.embedding_field, dense_index)

        self._collection.load()

    def _create_schema(self):
        """
        Creates the collection schema. The default fields include the id, embedding and doc_id.

        Returns: The schema of the collection
        """
        schema = MilvusClient.create_schema(auto_id=False, enable_dynamic_field=True)
        schema.add_field(
            field_name="id",
            datatype=DataType.VARCHAR,
            max_length=65_535,
            is_primary=True,
        )
        schema.add_field(
            field_name=self.embedding_field,
            datatype=DataType.FLOAT_VECTOR,
            dim=self.dim,
        )
        schema.add_field(
            field_name=self.doc_id_field,
            datatype=DataType.VARCHAR,
            max_length=65_535,
        )
        if self.scalar_field_names is not None and self.scalar_field_types is not None:
            if len(self.scalar_field_names) != len(self.scalar_field_types):
                raise ValueError(
                    "scalar_field_names and scalar_field_types must have same length."
                )

            for field_name, field_type in zip(
                self.scalar_field_names, self.scalar_field_types
            ):
                max_length = 65_535 if field_type == DataType.VARCHAR else None
                schema.add_field(
                    field_name=field_name, datatype=field_type, max_length=max_length
                )

        return schema

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add the embeddings and their nodes into Milvus.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes with embeddings to insert.

required

Raises:

Type Description
MilvusException

Failed to insert data.

Returns:

Type Description
List[str]

List[str]: List of ids inserted.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """Add the embeddings and their nodes into Milvus.

    Args:
        nodes (List[BaseNode]): List of nodes with embeddings
            to insert.

    Raises:
        MilvusException: Failed to insert data.

    Returns:
        List[str]: List of ids inserted.
    """
    insert_list = []
    insert_ids = []

    if self.enable_sparse is True and self.sparse_embedding_function is None:
        logger.fatal(
            "sparse_embedding_function is None when enable_sparse is True."
        )

    # Process that data we are going to insert
    for node in nodes:
        entry = node_to_metadata_dict(node)
        entry[MILVUS_ID_FIELD] = node.node_id
        entry[self.embedding_field] = node.embedding

        if self.enable_sparse is True:
            entry[
                self.sparse_embedding_field
            ] = self.sparse_embedding_function.encode_documents([node.text])[0]

        insert_ids.append(node.node_id)
        insert_list.append(entry)

    # Insert the data into milvus
    for insert_batch in iter_batch(insert_list, self.batch_size):
        self._collection.insert(insert_batch)
    if add_kwargs.get("force_flush", False):
        self._collection.flush()
    logger.debug(
        f"Successfully inserted embeddings into: {self.collection_name} "
        f"Num Inserted: {len(insert_list)}"
    )
    return insert_ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required

Raises:

Type Description
MilvusException

Failed to delete the doc.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    Raises:
        MilvusException: Failed to delete the doc.
    """
    # Adds ability for multiple doc delete in future.
    doc_ids: List[str]
    if isinstance(ref_doc_id, list):
        doc_ids = ref_doc_id  # type: ignore
    else:
        doc_ids = [ref_doc_id]

    # Begin by querying for the primary keys to delete
    doc_ids = ['"' + entry + '"' for entry in doc_ids]
    entries = self._milvusclient.query(
        collection_name=self.collection_name,
        filter=f"{self.doc_id_field} in [{','.join(doc_ids)}]",
    )
    if len(entries) > 0:
        ids = [entry["id"] for entry in entries]
        self._milvusclient.delete(collection_name=self.collection_name, pks=ids)
        logger.debug(f"Successfully deleted embedding with doc_id: {doc_ids}")

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Deletes nodes.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """Deletes nodes.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.
    """
    filters_cpy = deepcopy(filters) or MetadataFilters(filters=[])

    if node_ids:
        filters_cpy.filters.append(
            MetadataFilter(key="id", value=node_ids, operator=FilterOperator.IN)
        )

    if filters_cpy is not None:
        filter = _to_milvus_filter(filters_cpy)
    else:
        filter = None

    self._milvusclient.delete(
        collection_name=self.collection_name,
        filter=filter,
        **delete_kwargs,
    )
    logger.debug(f"Successfully deleted node_ids: {node_ids}")

clear #

clear() -> None

Clears db.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
491
492
493
def clear(self) -> None:
    """Clears db."""
    self._milvusclient.drop_collection(self.collection_name)

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None) -> List[BaseNode]

Get nodes by node ids or metadata filters.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to retrieve. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None

Raises:

Type Description
ValueError

Neither or both of node_ids and filters are provided.

Returns:

Type Description
List[BaseNode]

List[BaseNode]:

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
) -> List[BaseNode]:
    """Get nodes by node ids or metadata filters.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to retrieve. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    Raises:
        ValueError: Neither or both of node_ids and filters are provided.

    Returns:
        List[BaseNode]:
    """
    if node_ids is None and filters is None:
        raise ValueError("Either node_ids or filters must be provided.")

    filters_cpy = deepcopy(filters) or MetadataFilters(filters=[])
    milvus_filter = _to_milvus_filter(filters_cpy)

    if node_ids is not None and milvus_filter:
        raise ValueError("Only one of node_ids or filters can be provided.")

    res = self.client.query(
        ids=node_ids, collection_name=self.collection_name, filter=milvus_filter
    )

    nodes = []
    for item in res:
        if not self.text_key:
            node = metadata_dict_to_node(item)
            node.embedding = item.get(self.embedding_field, None)
        else:
            try:
                text = item.pop(self.text_key)
            except Exception:
                raise ValueError(
                    "The passed in text_key value does not exist "
                    "in the retrieved entity."
                ) from None
            embedding = item.pop(self.embedding_field, None)
            node = TextNode(
                text=text,
                embedding=embedding,
                metadata=item,
            )
        nodes.append(node)
    return nodes

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query_embedding List[float]

query embedding

required
similarity_top_k int

top k most similar nodes

required
doc_ids Optional[List[str]]

list of doc_ids to filter by

required
node_ids Optional[List[str]]

list of node_ids to filter by

required
output_fields Optional[List[str]]

list of fields to return

required
embedding_field Optional[str]

name of embedding field

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-milvus/llama_index/vector_stores/milvus/base.py
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """Query index for top k most similar nodes.

    Args:
        query_embedding (List[float]): query embedding
        similarity_top_k (int): top k most similar nodes
        doc_ids (Optional[List[str]]): list of doc_ids to filter by
        node_ids (Optional[List[str]]): list of node_ids to filter by
        output_fields (Optional[List[str]]): list of fields to return
        embedding_field (Optional[str]): name of embedding field
    """
    if query.mode == VectorStoreQueryMode.DEFAULT:
        pass
    elif query.mode == VectorStoreQueryMode.HYBRID:
        if self.enable_sparse is False:
            raise ValueError(f"QueryMode is HYBRID, but enable_sparse is False.")
    elif query.mode == VectorStoreQueryMode.MMR:
        pass
    else:
        raise ValueError(f"Milvus does not support {query.mode} yet.")

    expr = []
    output_fields = ["*"]

    # Parse the filter

    if query.filters is not None or "milvus_scalar_filters" in kwargs:
        expr.append(
            _to_milvus_filter(
                query.filters,
                (
                    kwargs["milvus_scalar_filters"]
                    if "milvus_scalar_filters" in kwargs
                    else None
                ),
            )
        )

    # Parse any docs we are filtering on
    if query.doc_ids is not None and len(query.doc_ids) != 0:
        expr_list = ['"' + entry + '"' for entry in query.doc_ids]
        expr.append(f"{self.doc_id_field} in [{','.join(expr_list)}]")

    # Parse any nodes we are filtering on
    if query.node_ids is not None and len(query.node_ids) != 0:
        expr_list = ['"' + entry + '"' for entry in query.node_ids]
        expr.append(f"{MILVUS_ID_FIELD} in [{','.join(expr_list)}]")

    # Limit output fields
    outputs_limited = False
    if query.output_fields is not None:
        output_fields = query.output_fields
        outputs_limited = True
    elif len(self.output_fields) > 0:
        output_fields = [*self.output_fields]
        outputs_limited = True

    # Add the text key to output fields if necessary
    if self.text_key and self.text_key not in output_fields and outputs_limited:
        output_fields.append(self.text_key)

    # Convert to string expression
    string_expr = ""
    if len(expr) != 0:
        string_expr = f" and ".join(expr)

    # Perform the search
    if query.mode == VectorStoreQueryMode.DEFAULT:
        # Perform default search
        res = self._milvusclient.search(
            collection_name=self.collection_name,
            data=[query.query_embedding],
            filter=string_expr,
            limit=query.similarity_top_k,
            output_fields=output_fields,
            search_params=self.search_config,
            anns_field=self.embedding_field,
        )
        logger.debug(
            f"Successfully searched embedding in collection: {self.collection_name}"
            f" Num Results: {len(res[0])}"
        )

        nodes = []
        similarities = []
        ids = []
        # Parse the results
        for hit in res[0]:
            if not self.text_key:
                node = metadata_dict_to_node(
                    {
                        "_node_content": hit["entity"].get("_node_content", None),
                        "_node_type": hit["entity"].get("_node_type", None),
                    }
                )
            else:
                try:
                    text = hit["entity"].get(self.text_key)
                except Exception:
                    raise ValueError(
                        "The passed in text_key value does not exist "
                        "in the retrieved entity."
                    )

                metadata = {
                    key: hit["entity"].get(key) for key in self.output_fields
                }
                node = TextNode(text=text, metadata=metadata)

            nodes.append(node)
            similarities.append(hit["distance"])
            ids.append(hit["id"])

    elif query.mode == VectorStoreQueryMode.MMR:
        # Perform MMR search
        mmr_threshold = kwargs.get("mmr_threshold", None)

        if (
            kwargs.get("mmr_prefetch_factor") is not None
            and kwargs.get("mmr_prefetch_k") is not None
        ):
            raise ValueError(
                "'mmr_prefetch_factor' and 'mmr_prefetch_k' "
                "cannot coexist in a call to query()"
            )
        else:
            if kwargs.get("mmr_prefetch_k") is not None:
                prefetch_k0 = int(kwargs["mmr_prefetch_k"])
            else:
                prefetch_k0 = int(
                    query.similarity_top_k
                    * kwargs.get("mmr_prefetch_factor", DEFAULT_MMR_PREFETCH_FACTOR)
                )

        res = self._milvusclient.search(
            collection_name=self.collection_name,
            data=[query.query_embedding],
            filter=string_expr,
            limit=prefetch_k0,
            output_fields=output_fields,
            search_params=self.search_config,
            anns_field=self.embedding_field,
        )

        nodes = res[0]
        node_embeddings = []
        node_ids = []
        for node in nodes:
            node_embeddings.append(node["entity"]["embedding"])
            node_ids.append(node["id"])

        mmr_similarities, mmr_ids = get_top_k_mmr_embeddings(
            query_embedding=query.query_embedding,
            embeddings=node_embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
            mmr_threshold=mmr_threshold,
        )

        node_dict = dict(list(zip(node_ids, nodes)))
        selected_nodes = [node_dict[id] for id in mmr_ids if id in node_dict]

        nodes = []
        # Parse the results
        for hit in selected_nodes:
            if not self.text_key:
                node = metadata_dict_to_node(
                    {
                        "_node_content": hit["entity"].get("_node_content", None),
                        "_node_type": hit["entity"].get("_node_type", None),
                    }
                )
            else:
                try:
                    text = hit["entity"].get(self.text_key)
                except Exception:
                    raise ValueError(
                        "The passed in text_key value does not exist "
                        "in the retrieved entity."
                    )

                metadata = {
                    key: hit["entity"].get(key) for key in self.output_fields
                }
                node = TextNode(text=text, metadata=metadata)

            nodes.append(node)

        similarities = mmr_similarities  # Passing the MMR similarities instead of the original similarities
        ids = mmr_ids

        logger.debug(
            f"Successfully performed MMR on embeddings in collection: {self.collection_name}"
        )

    else:
        # Perform hybrid search
        sparse_emb = self.sparse_embedding_function.encode_queries(
            [query.query_str]
        )[0]
        sparse_search_params = {"metric_type": "IP"}

        sparse_req = AnnSearchRequest(
            data=[sparse_emb],
            anns_field=self.sparse_embedding_field,
            param=sparse_search_params,
            limit=query.similarity_top_k,
            expr=string_expr,  # Apply metadata filters to sparse search
        )

        dense_search_params = {
            "metric_type": self.similarity_metric,
            "params": self.search_config,
        }
        dense_emb = query.query_embedding
        dense_req = AnnSearchRequest(
            data=[dense_emb],
            anns_field=self.embedding_field,
            param=dense_search_params,
            limit=query.similarity_top_k,
            expr=string_expr,  # Apply metadata filters to dense search
        )
        ranker = None

        if WeightedRanker is None or RRFRanker is None:
            logger.error(
                "Hybrid retrieval is only supported in Milvus 2.4.0 or later."
            )
            raise ValueError(
                "Hybrid retrieval is only supported in Milvus 2.4.0 or later."
            )
        if self.hybrid_ranker == "WeightedRanker":
            if self.hybrid_ranker_params == {}:
                self.hybrid_ranker_params = {"weights": [1.0, 1.0]}
            ranker = WeightedRanker(*self.hybrid_ranker_params["weights"])
        elif self.hybrid_ranker == "RRFRanker":
            if self.hybrid_ranker_params == {}:
                self.hybrid_ranker_params = {"k": 60}
            ranker = RRFRanker(self.hybrid_ranker_params["k"])
        else:
            raise ValueError(f"Unsupported ranker: {self.hybrid_ranker}")

        res = self._collection.hybrid_search(
            [dense_req, sparse_req],
            rerank=ranker,
            limit=query.similarity_top_k,
            output_fields=output_fields,
        )

        logger.debug(
            f"Successfully searched embedding in collection: {self.collection_name}"
            f" Num Results: {len(res[0])}"
        )

        nodes = []
        similarities = []
        ids = []
        # Parse the results
        for hit in res[0]:
            if not self.text_key:
                node = metadata_dict_to_node(
                    {
                        "_node_content": hit.entity.get("_node_content"),
                        "_node_type": hit.entity.get("_node_type"),
                    }
                )
            else:
                try:
                    text = hit.entity.get(self.text_key)
                except Exception:
                    raise ValueError(
                        "The passed in text_key value does not exist "
                        "in the retrieved entity."
                    )

                metadata = {key: hit.entity.get(key) for key in self.output_fields}
                node = TextNode(text=text, metadata=metadata)

            nodes.append(node)
            similarities.append(hit.distance)
            ids.append(hit.id)

    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)