Skip to content

Index

IngestionPipeline #

Bases: BaseModel

An ingestion pipeline that can be applied to data.

Parameters:

Name Type Description Default
name str

Unique name of the ingestion pipeline. Defaults to DEFAULT_PIPELINE_NAME.

DEFAULT_PIPELINE_NAME
project_name str

Unique name of the project. Defaults to DEFAULT_PROJECT_NAME.

DEFAULT_PROJECT_NAME
transformations List[TransformComponent]

Transformations to apply to the data. Defaults to None.

None
documents Optional[Sequence[Document]]

Documents to ingest. Defaults to None.

None
readers Optional[List[ReaderConfig]]

Reader to use to read the data. Defaults to None.

None
vector_store Optional[BasePydanticVectorStore]

Vector store to use to store the data. Defaults to None.

None
cache Optional[IngestionCache]

Cache to use to store the data. Defaults to None.

None
docstore Optional[BaseDocumentStore]

Document store to use for de-duping with a vector store. Defaults to None.

None
docstore_strategy DocstoreStrategy

Document de-dup strategy. Defaults to DocstoreStrategy.UPSERTS.

UPSERTS
disable_cache bool

Disable the cache. Defaults to False.

False
base_url str

Base URL for the LlamaCloud API. Defaults to DEFAULT_BASE_URL.

required
app_url str

Base URL for the LlamaCloud app. Defaults to DEFAULT_APP_URL.

required
api_key Optional[str]

LlamaCloud API key. Defaults to None.

required

Examples:

from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding

pipeline = IngestionPipeline(
    transformations=[
        SentenceSplitter(chunk_size=512, chunk_overlap=20),
        OpenAIEmbedding(),
    ],
)

nodes = pipeline.run(documents=documents)
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
class IngestionPipeline(BaseModel):
    """
    An ingestion pipeline that can be applied to data.

    Args:
        name (str, optional):
            Unique name of the ingestion pipeline. Defaults to DEFAULT_PIPELINE_NAME.
        project_name (str, optional):
            Unique name of the project. Defaults to DEFAULT_PROJECT_NAME.
        transformations (List[TransformComponent], optional):
            Transformations to apply to the data. Defaults to None.
        documents (Optional[Sequence[Document]], optional):
            Documents to ingest. Defaults to None.
        readers (Optional[List[ReaderConfig]], optional):
            Reader to use to read the data. Defaults to None.
        vector_store (Optional[BasePydanticVectorStore], optional):
            Vector store to use to store the data. Defaults to None.
        cache (Optional[IngestionCache], optional):
            Cache to use to store the data. Defaults to None.
        docstore (Optional[BaseDocumentStore], optional):
            Document store to use for de-duping with a vector store. Defaults to None.
        docstore_strategy (DocstoreStrategy, optional):
            Document de-dup strategy. Defaults to DocstoreStrategy.UPSERTS.
        disable_cache (bool, optional):
            Disable the cache. Defaults to False.
        base_url (str, optional):
            Base URL for the LlamaCloud API. Defaults to DEFAULT_BASE_URL.
        app_url (str, optional):
            Base URL for the LlamaCloud app. Defaults to DEFAULT_APP_URL.
        api_key (Optional[str], optional):
            LlamaCloud API key. Defaults to None.

    Examples:
        ```python
        from llama_index.core.ingestion import IngestionPipeline
        from llama_index.core.node_parser import SentenceSplitter
        from llama_index.embeddings.openai import OpenAIEmbedding

        pipeline = IngestionPipeline(
            transformations=[
                SentenceSplitter(chunk_size=512, chunk_overlap=20),
                OpenAIEmbedding(),
            ],
        )

        nodes = pipeline.run(documents=documents)
        ```
    """

    name: str = Field(
        default=DEFAULT_PIPELINE_NAME,
        description="Unique name of the ingestion pipeline",
    )
    project_name: str = Field(
        default=DEFAULT_PROJECT_NAME, description="Unique name of the project"
    )

    transformations: List[TransformComponent] = Field(
        description="Transformations to apply to the data"
    )

    documents: Optional[Sequence[Document]] = Field(description="Documents to ingest")
    readers: Optional[List[ReaderConfig]] = Field(
        description="Reader to use to read the data"
    )
    vector_store: Optional[BasePydanticVectorStore] = Field(
        description="Vector store to use to store the data"
    )
    cache: IngestionCache = Field(
        default_factory=IngestionCache,
        description="Cache to use to store the data",
    )
    docstore: Optional[BaseDocumentStore] = Field(
        default=None,
        description="Document store to use for de-duping with a vector store.",
    )
    docstore_strategy: DocstoreStrategy = Field(
        default=DocstoreStrategy.UPSERTS, description="Document de-dup strategy."
    )
    disable_cache: bool = Field(default=False, description="Disable the cache")

    class Config:
        arbitrary_types_allowed = True

    def __init__(
        self,
        name: str = DEFAULT_PIPELINE_NAME,
        project_name: str = DEFAULT_PROJECT_NAME,
        transformations: Optional[List[TransformComponent]] = None,
        readers: Optional[List[ReaderConfig]] = None,
        documents: Optional[Sequence[Document]] = None,
        vector_store: Optional[BasePydanticVectorStore] = None,
        cache: Optional[IngestionCache] = None,
        docstore: Optional[BaseDocumentStore] = None,
        docstore_strategy: DocstoreStrategy = DocstoreStrategy.UPSERTS,
        disable_cache: bool = False,
    ) -> None:
        if transformations is None:
            transformations = self._get_default_transformations()

        super().__init__(
            name=name,
            project_name=project_name,
            transformations=transformations,
            readers=readers,
            documents=documents,
            vector_store=vector_store,
            cache=cache or IngestionCache(),
            docstore=docstore,
            docstore_strategy=docstore_strategy,
            disable_cache=disable_cache,
        )

    def persist(
        self,
        persist_dir: str = "./pipeline_storage",
        fs: Optional[AbstractFileSystem] = None,
        cache_name: str = DEFAULT_CACHE_NAME,
        docstore_name: str = DOCSTORE_FNAME,
    ) -> None:
        """Persist the pipeline to disk."""
        if fs is not None:
            persist_dir = str(persist_dir)  # NOTE: doesn't support Windows here
            docstore_path = concat_dirs(persist_dir, docstore_name)
            cache_path = concat_dirs(persist_dir, cache_name)

        else:
            persist_path = Path(persist_dir)
            docstore_path = str(persist_path / docstore_name)
            cache_path = str(persist_path / cache_name)

        self.cache.persist(cache_path, fs=fs)
        if self.docstore is not None:
            self.docstore.persist(docstore_path, fs=fs)

    def load(
        self,
        persist_dir: str = "./pipeline_storage",
        fs: Optional[AbstractFileSystem] = None,
        cache_name: str = DEFAULT_CACHE_NAME,
        docstore_name: str = DOCSTORE_FNAME,
    ) -> None:
        """Load the pipeline from disk."""
        if fs is not None:
            self.cache = IngestionCache.from_persist_path(
                concat_dirs(persist_dir, cache_name), fs=fs
            )
            persist_docstore_path = concat_dirs(persist_dir, docstore_name)
            if os.path.exists(persist_docstore_path):
                self.docstore = SimpleDocumentStore.from_persist_path(
                    concat_dirs(persist_dir, docstore_name), fs=fs
                )
        else:
            self.cache = IngestionCache.from_persist_path(
                str(Path(persist_dir) / cache_name)
            )
            persist_docstore_path = str(Path(persist_dir) / docstore_name)
            if os.path.exists(persist_docstore_path):
                self.docstore = SimpleDocumentStore.from_persist_path(
                    str(Path(persist_dir) / docstore_name)
                )

    def _get_default_transformations(self) -> List[TransformComponent]:
        return [
            SentenceSplitter(),
            Settings.embed_model,
        ]

    def _prepare_inputs(
        self, documents: Optional[List[Document]], nodes: Optional[List[BaseNode]]
    ) -> List[Document]:
        input_nodes: List[BaseNode] = []
        if documents is not None:
            input_nodes += documents

        if nodes is not None:
            input_nodes += nodes

        if self.documents is not None:
            input_nodes += self.documents

        if self.readers is not None:
            for reader in self.readers:
                input_nodes += reader.read()

        return input_nodes

    def _handle_duplicates(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore duplicates by checking all hashes."""
        assert self.docstore is not None

        existing_hashes = self.docstore.get_all_document_hashes()
        current_hashes = []
        nodes_to_run = []
        for node in nodes:
            if node.hash not in existing_hashes and node.hash not in current_hashes:
                self.docstore.set_document_hash(node.id_, node.hash)
                nodes_to_run.append(node)
                current_hashes.append(node.hash)

        self.docstore.add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    def _handle_upserts(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore upserts by checking hashes and ids."""
        assert self.docstore is not None

        existing_doc_ids_before = set(self.docstore.get_all_document_hashes().values())
        doc_ids_from_nodes = set()
        deduped_nodes_to_run = {}
        for node in nodes:
            ref_doc_id = node.ref_doc_id if node.ref_doc_id else node.id_
            doc_ids_from_nodes.add(ref_doc_id)
            existing_hash = self.docstore.get_document_hash(ref_doc_id)
            if not existing_hash:
                # document doesn't exist, so add it
                self.docstore.set_document_hash(ref_doc_id, node.hash)
                deduped_nodes_to_run[ref_doc_id] = node
            elif existing_hash and existing_hash != node.hash:
                self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

                if self.vector_store is not None:
                    self.vector_store.delete(ref_doc_id)

                self.docstore.set_document_hash(ref_doc_id, node.hash)

                deduped_nodes_to_run[ref_doc_id] = node
            else:
                continue  # document exists and is unchanged, so skip it

        if self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            # Identify missing docs and delete them from docstore and vector store
            doc_ids_to_delete = existing_doc_ids_before - doc_ids_from_nodes
            for ref_doc_id in doc_ids_to_delete:
                self.docstore.delete_document(ref_doc_id)

                if self.vector_store is not None:
                    self.vector_store.delete(ref_doc_id)

        nodes_to_run = list(deduped_nodes_to_run.values())
        self.docstore.add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    @staticmethod
    def _node_batcher(
        num_batches: int, nodes: Union[List[BaseNode], List[Document]]
    ) -> Generator[Union[List[BaseNode], List[Document]], Any, Any]:
        """Yield successive n-sized chunks from lst."""
        batch_size = max(1, int(len(nodes) / num_batches))
        for i in range(0, len(nodes), batch_size):
            yield nodes[i : i + batch_size]

    @dispatcher.span
    def run(
        self,
        show_progress: bool = False,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
        cache_collection: Optional[str] = None,
        in_place: bool = True,
        store_doc_text: bool = True,
        num_workers: Optional[int] = None,
        **kwargs: Any,
    ) -> Sequence[BaseNode]:
        """
        Run a series of transformations on a set of nodes.

        If a vector store is provided, nodes with embeddings will be added to the vector store.

        If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

        Args:
            show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
            documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
            nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
            cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
            in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
                array passed to `run_transformations`. Defaults to True.
            num_workers (Optional[int], optional): The number of parallel processes to use.
                If set to None, then sequential compute is used. Defaults to None.

        Returns:
            Sequence[BaseNode]: The set of transformed Nodes/Documents
        """
        input_nodes = self._prepare_inputs(documents, nodes)

        # check if we need to dedup
        if self.docstore is not None and self.vector_store is not None:
            if self.docstore_strategy in (
                DocstoreStrategy.UPSERTS,
                DocstoreStrategy.UPSERTS_AND_DELETE,
            ):
                nodes_to_run = self._handle_upserts(
                    input_nodes, store_doc_text=store_doc_text
                )
            elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
                nodes_to_run = self._handle_duplicates(
                    input_nodes, store_doc_text=store_doc_text
                )
            else:
                raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
        elif self.docstore is not None and self.vector_store is None:
            if self.docstore_strategy == DocstoreStrategy.UPSERTS:
                print(
                    "Docstore strategy set to upserts, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
                print(
                    "Docstore strategy set to upserts and delete, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            nodes_to_run = self._handle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )

        else:
            nodes_to_run = input_nodes

        if num_workers and num_workers > 1:
            if num_workers > multiprocessing.cpu_count():
                warnings.warn(
                    "Specified num_workers exceed number of CPUs in the system. "
                    "Setting `num_workers` down to the maximum CPU count."
                )

            with multiprocessing.get_context("spawn").Pool(num_workers) as p:
                node_batches = self._node_batcher(
                    num_batches=num_workers, nodes=nodes_to_run
                )
                nodes_parallel = p.starmap(
                    run_transformations,
                    zip(
                        node_batches,
                        repeat(self.transformations),
                        repeat(in_place),
                        repeat(self.cache if not self.disable_cache else None),
                        repeat(cache_collection),
                    ),
                )
                nodes = reduce(lambda x, y: x + y, nodes_parallel, [])
        else:
            nodes = run_transformations(
                nodes_to_run,
                self.transformations,
                show_progress=show_progress,
                cache=self.cache if not self.disable_cache else None,
                cache_collection=cache_collection,
                in_place=in_place,
                **kwargs,
            )

        if self.vector_store is not None:
            self.vector_store.add([n for n in nodes if n.embedding is not None])

        return nodes

    # ------ async methods ------

    async def _ahandle_duplicates(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore duplicates by checking all hashes."""
        assert self.docstore is not None

        existing_hashes = await self.docstore.aget_all_document_hashes()
        current_hashes = []
        nodes_to_run = []
        for node in nodes:
            if node.hash not in existing_hashes and node.hash not in current_hashes:
                await self.docstore.aset_document_hash(node.id_, node.hash)
                nodes_to_run.append(node)
                current_hashes.append(node.hash)

        await self.docstore.async_add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    async def _ahandle_upserts(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore upserts by checking hashes and ids."""
        assert self.docstore is not None

        existing_doc_ids_before = set(
            (await self.docstore.aget_all_document_hashes()).values()
        )
        doc_ids_from_nodes = set()
        deduped_nodes_to_run = {}
        for node in nodes:
            ref_doc_id = node.ref_doc_id if node.ref_doc_id else node.id_
            doc_ids_from_nodes.add(ref_doc_id)
            existing_hash = await self.docstore.aget_document_hash(ref_doc_id)
            if not existing_hash:
                # document doesn't exist, so add it
                await self.docstore.aset_document_hash(ref_doc_id, node.hash)
                deduped_nodes_to_run[ref_doc_id] = node
            elif existing_hash and existing_hash != node.hash:
                await self.docstore.adelete_ref_doc(ref_doc_id, raise_error=False)

                if self.vector_store is not None:
                    await self.vector_store.adelete(ref_doc_id)

                await self.docstore.aset_document_hash(ref_doc_id, node.hash)

                deduped_nodes_to_run[ref_doc_id] = node
            else:
                continue  # document exists and is unchanged, so skip it

        if self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            # Identify missing docs and delete them from docstore and vector store
            doc_ids_to_delete = existing_doc_ids_before - doc_ids_from_nodes
            for ref_doc_id in doc_ids_to_delete:
                await self.docstore.adelete_document(ref_doc_id)

                if self.vector_store is not None:
                    await self.vector_store.adelete(ref_doc_id)

        nodes_to_run = list(deduped_nodes_to_run.values())
        await self.docstore.async_add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    @dispatcher.span
    async def arun(
        self,
        show_progress: bool = False,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
        cache_collection: Optional[str] = None,
        in_place: bool = True,
        store_doc_text: bool = True,
        num_workers: Optional[int] = None,
        **kwargs: Any,
    ) -> Sequence[BaseNode]:
        """
        Run a series of transformations on a set of nodes.

        If a vector store is provided, nodes with embeddings will be added to the vector store.

        If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

        Args:
            show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
            documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
            nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
            cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
            in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
                array passed to `run_transformations`. Defaults to True.
            num_workers (Optional[int], optional): The number of parallel processes to use.
                If set to None, then sequential compute is used. Defaults to None.

        Returns:
            Sequence[BaseNode]: The set of transformed Nodes/Documents
        """
        input_nodes = self._prepare_inputs(documents, nodes)

        # check if we need to dedup
        if self.docstore is not None and self.vector_store is not None:
            if self.docstore_strategy in (
                DocstoreStrategy.UPSERTS,
                DocstoreStrategy.UPSERTS_AND_DELETE,
            ):
                nodes_to_run = await self._ahandle_upserts(
                    input_nodes, store_doc_text=store_doc_text
                )
            elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
                nodes_to_run = await self._ahandle_duplicates(
                    input_nodes, store_doc_text=store_doc_text
                )
            else:
                raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
        elif self.docstore is not None and self.vector_store is None:
            if self.docstore_strategy == DocstoreStrategy.UPSERTS:
                print(
                    "Docstore strategy set to upserts, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
                print(
                    "Docstore strategy set to upserts and delete, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            nodes_to_run = await self._ahandle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )

        else:
            nodes_to_run = input_nodes

        if num_workers and num_workers > 1:
            if num_workers > multiprocessing.cpu_count():
                warnings.warn(
                    "Specified num_workers exceed number of CPUs in the system. "
                    "Setting `num_workers` down to the maximum CPU count."
                )

            loop = asyncio.get_event_loop()
            with ProcessPoolExecutor(max_workers=num_workers) as p:
                node_batches = self._node_batcher(
                    num_batches=num_workers, nodes=nodes_to_run
                )
                tasks = [
                    loop.run_in_executor(
                        p,
                        partial(
                            arun_transformations_wrapper,
                            transformations=self.transformations,
                            in_place=in_place,
                            cache=self.cache if not self.disable_cache else None,
                            cache_collection=cache_collection,
                        ),
                        batch,
                    )
                    for batch in node_batches
                ]
                result: List[List[BaseNode]] = await asyncio.gather(*tasks)
                nodes = reduce(lambda x, y: x + y, result, [])
        else:
            nodes = await arun_transformations(
                nodes_to_run,
                self.transformations,
                show_progress=show_progress,
                cache=self.cache if not self.disable_cache else None,
                cache_collection=cache_collection,
                in_place=in_place,
                **kwargs,
            )

        if self.vector_store is not None:
            await self.vector_store.async_add(
                [n for n in nodes if n.embedding is not None]
            )

        return nodes

persist #

persist(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None

Persist the pipeline to disk.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def persist(
    self,
    persist_dir: str = "./pipeline_storage",
    fs: Optional[AbstractFileSystem] = None,
    cache_name: str = DEFAULT_CACHE_NAME,
    docstore_name: str = DOCSTORE_FNAME,
) -> None:
    """Persist the pipeline to disk."""
    if fs is not None:
        persist_dir = str(persist_dir)  # NOTE: doesn't support Windows here
        docstore_path = concat_dirs(persist_dir, docstore_name)
        cache_path = concat_dirs(persist_dir, cache_name)

    else:
        persist_path = Path(persist_dir)
        docstore_path = str(persist_path / docstore_name)
        cache_path = str(persist_path / cache_name)

    self.cache.persist(cache_path, fs=fs)
    if self.docstore is not None:
        self.docstore.persist(docstore_path, fs=fs)

load #

load(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None

Load the pipeline from disk.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def load(
    self,
    persist_dir: str = "./pipeline_storage",
    fs: Optional[AbstractFileSystem] = None,
    cache_name: str = DEFAULT_CACHE_NAME,
    docstore_name: str = DOCSTORE_FNAME,
) -> None:
    """Load the pipeline from disk."""
    if fs is not None:
        self.cache = IngestionCache.from_persist_path(
            concat_dirs(persist_dir, cache_name), fs=fs
        )
        persist_docstore_path = concat_dirs(persist_dir, docstore_name)
        if os.path.exists(persist_docstore_path):
            self.docstore = SimpleDocumentStore.from_persist_path(
                concat_dirs(persist_dir, docstore_name), fs=fs
            )
    else:
        self.cache = IngestionCache.from_persist_path(
            str(Path(persist_dir) / cache_name)
        )
        persist_docstore_path = str(Path(persist_dir) / docstore_name)
        if os.path.exists(persist_docstore_path):
            self.docstore = SimpleDocumentStore.from_persist_path(
                str(Path(persist_dir) / docstore_name)
            )

run #

run(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[List[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]

Run a series of transformations on a set of nodes.

If a vector store is provided, nodes with embeddings will be added to the vector store.

If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

Parameters:

Name Type Description Default
show_progress bool

Shows execution progress bar(s). Defaults to False.

False
documents Optional[List[Document]]

Set of documents to be transformed. Defaults to None.

None
nodes Optional[List[BaseNode]]

Set of nodes to be transformed. Defaults to None.

None
cache_collection Optional[str]

Cache for transformations. Defaults to None.

None
in_place bool

Whether transformations creates a new list for transformed nodes or modifies the array passed to run_transformations. Defaults to True.

True
num_workers Optional[int]

The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None.

None

Returns:

Type Description
Sequence[BaseNode]

Sequence[BaseNode]: The set of transformed Nodes/Documents

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
@dispatcher.span
def run(
    self,
    show_progress: bool = False,
    documents: Optional[List[Document]] = None,
    nodes: Optional[List[BaseNode]] = None,
    cache_collection: Optional[str] = None,
    in_place: bool = True,
    store_doc_text: bool = True,
    num_workers: Optional[int] = None,
    **kwargs: Any,
) -> Sequence[BaseNode]:
    """
    Run a series of transformations on a set of nodes.

    If a vector store is provided, nodes with embeddings will be added to the vector store.

    If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

    Args:
        show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
        documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
        nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
        cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
        in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
            array passed to `run_transformations`. Defaults to True.
        num_workers (Optional[int], optional): The number of parallel processes to use.
            If set to None, then sequential compute is used. Defaults to None.

    Returns:
        Sequence[BaseNode]: The set of transformed Nodes/Documents
    """
    input_nodes = self._prepare_inputs(documents, nodes)

    # check if we need to dedup
    if self.docstore is not None and self.vector_store is not None:
        if self.docstore_strategy in (
            DocstoreStrategy.UPSERTS,
            DocstoreStrategy.UPSERTS_AND_DELETE,
        ):
            nodes_to_run = self._handle_upserts(
                input_nodes, store_doc_text=store_doc_text
            )
        elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
            nodes_to_run = self._handle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )
        else:
            raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
    elif self.docstore is not None and self.vector_store is None:
        if self.docstore_strategy == DocstoreStrategy.UPSERTS:
            print(
                "Docstore strategy set to upserts, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            print(
                "Docstore strategy set to upserts and delete, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        nodes_to_run = self._handle_duplicates(
            input_nodes, store_doc_text=store_doc_text
        )

    else:
        nodes_to_run = input_nodes

    if num_workers and num_workers > 1:
        if num_workers > multiprocessing.cpu_count():
            warnings.warn(
                "Specified num_workers exceed number of CPUs in the system. "
                "Setting `num_workers` down to the maximum CPU count."
            )

        with multiprocessing.get_context("spawn").Pool(num_workers) as p:
            node_batches = self._node_batcher(
                num_batches=num_workers, nodes=nodes_to_run
            )
            nodes_parallel = p.starmap(
                run_transformations,
                zip(
                    node_batches,
                    repeat(self.transformations),
                    repeat(in_place),
                    repeat(self.cache if not self.disable_cache else None),
                    repeat(cache_collection),
                ),
            )
            nodes = reduce(lambda x, y: x + y, nodes_parallel, [])
    else:
        nodes = run_transformations(
            nodes_to_run,
            self.transformations,
            show_progress=show_progress,
            cache=self.cache if not self.disable_cache else None,
            cache_collection=cache_collection,
            in_place=in_place,
            **kwargs,
        )

    if self.vector_store is not None:
        self.vector_store.add([n for n in nodes if n.embedding is not None])

    return nodes

arun async #

arun(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[List[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]

Run a series of transformations on a set of nodes.

If a vector store is provided, nodes with embeddings will be added to the vector store.

If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

Parameters:

Name Type Description Default
show_progress bool

Shows execution progress bar(s). Defaults to False.

False
documents Optional[List[Document]]

Set of documents to be transformed. Defaults to None.

None
nodes Optional[List[BaseNode]]

Set of nodes to be transformed. Defaults to None.

None
cache_collection Optional[str]

Cache for transformations. Defaults to None.

None
in_place bool

Whether transformations creates a new list for transformed nodes or modifies the array passed to run_transformations. Defaults to True.

True
num_workers Optional[int]

The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None.

None

Returns:

Type Description
Sequence[BaseNode]

Sequence[BaseNode]: The set of transformed Nodes/Documents

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
@dispatcher.span
async def arun(
    self,
    show_progress: bool = False,
    documents: Optional[List[Document]] = None,
    nodes: Optional[List[BaseNode]] = None,
    cache_collection: Optional[str] = None,
    in_place: bool = True,
    store_doc_text: bool = True,
    num_workers: Optional[int] = None,
    **kwargs: Any,
) -> Sequence[BaseNode]:
    """
    Run a series of transformations on a set of nodes.

    If a vector store is provided, nodes with embeddings will be added to the vector store.

    If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

    Args:
        show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
        documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
        nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
        cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
        in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
            array passed to `run_transformations`. Defaults to True.
        num_workers (Optional[int], optional): The number of parallel processes to use.
            If set to None, then sequential compute is used. Defaults to None.

    Returns:
        Sequence[BaseNode]: The set of transformed Nodes/Documents
    """
    input_nodes = self._prepare_inputs(documents, nodes)

    # check if we need to dedup
    if self.docstore is not None and self.vector_store is not None:
        if self.docstore_strategy in (
            DocstoreStrategy.UPSERTS,
            DocstoreStrategy.UPSERTS_AND_DELETE,
        ):
            nodes_to_run = await self._ahandle_upserts(
                input_nodes, store_doc_text=store_doc_text
            )
        elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
            nodes_to_run = await self._ahandle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )
        else:
            raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
    elif self.docstore is not None and self.vector_store is None:
        if self.docstore_strategy == DocstoreStrategy.UPSERTS:
            print(
                "Docstore strategy set to upserts, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            print(
                "Docstore strategy set to upserts and delete, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        nodes_to_run = await self._ahandle_duplicates(
            input_nodes, store_doc_text=store_doc_text
        )

    else:
        nodes_to_run = input_nodes

    if num_workers and num_workers > 1:
        if num_workers > multiprocessing.cpu_count():
            warnings.warn(
                "Specified num_workers exceed number of CPUs in the system. "
                "Setting `num_workers` down to the maximum CPU count."
            )

        loop = asyncio.get_event_loop()
        with ProcessPoolExecutor(max_workers=num_workers) as p:
            node_batches = self._node_batcher(
                num_batches=num_workers, nodes=nodes_to_run
            )
            tasks = [
                loop.run_in_executor(
                    p,
                    partial(
                        arun_transformations_wrapper,
                        transformations=self.transformations,
                        in_place=in_place,
                        cache=self.cache if not self.disable_cache else None,
                        cache_collection=cache_collection,
                    ),
                    batch,
                )
                for batch in node_batches
            ]
            result: List[List[BaseNode]] = await asyncio.gather(*tasks)
            nodes = reduce(lambda x, y: x + y, result, [])
    else:
        nodes = await arun_transformations(
            nodes_to_run,
            self.transformations,
            show_progress=show_progress,
            cache=self.cache if not self.disable_cache else None,
            cache_collection=cache_collection,
            in_place=in_place,
            **kwargs,
        )

    if self.vector_store is not None:
        await self.vector_store.async_add(
            [n for n in nodes if n.embedding is not None]
        )

    return nodes

DocstoreStrategy #

Bases: str, Enum

Document de-duplication de-deduplication strategies work by comparing the hashes or ids stored in the document store. They require a document store to be set which must be persisted across pipeline runs.

Attributes:

Name Type Description
UPSERTS

('upserts') Use upserts to handle duplicates. Checks if the a document is already in the doc store based on its id. If it is not, or if the hash of the document is updated, it will update the document in the doc store and run the transformations.

DUPLICATES_ONLY

('duplicates_only') Only handle duplicates. Checks if the hash of a document is already in the doc store. Only then it will add the document to the doc store and run the transformations

UPSERTS_AND_DELETE

('upserts_and_delete') Use upserts and delete to handle duplicates. Like the upsert strategy but it will also delete non-existing documents from the doc store

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
class DocstoreStrategy(str, Enum):
    """
    Document de-duplication de-deduplication strategies work by comparing the hashes or ids stored in the document store.
       They require a document store to be set which must be persisted across pipeline runs.

    Attributes:
        UPSERTS:
            ('upserts') Use upserts to handle duplicates. Checks if the a document is already in the doc store based on its id. If it is not, or if the hash of the document is updated, it will update the document in the doc store and run the transformations.
        DUPLICATES_ONLY:
            ('duplicates_only') Only handle duplicates. Checks if the hash of a document is already in the doc store. Only then it will add the document to the doc store and run the transformations
        UPSERTS_AND_DELETE:
            ('upserts_and_delete') Use upserts and delete to handle duplicates. Like the upsert strategy but it will also delete non-existing documents from the doc store
    """

    UPSERTS = "upserts"
    DUPLICATES_ONLY = "duplicates_only"
    UPSERTS_AND_DELETE = "upserts_and_delete"