Skip to content

Duckdb

DuckDBVectorStore #

Bases: BasePydanticVectorStore

DuckDB vector store.

In this vector store, embeddings are stored within a DuckDB database.

During query time, the index uses DuckDB to query for the top k most similar nodes.

Examples:

pip install llama-index-vector-stores-duckdb

from llama_index.vector_stores.duckdb import DuckDBVectorStore

# in-memory
vector_store = DuckDBVectorStore()

# persist to disk
vector_store = DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
class DuckDBVectorStore(BasePydanticVectorStore):
    """
    DuckDB vector store.

    In this vector store, embeddings are stored within a DuckDB database.

    During query time, the index uses DuckDB to query for the top
    k most similar nodes.

    Examples:
        `pip install llama-index-vector-stores-duckdb`

        ```python
        from llama_index.vector_stores.duckdb import DuckDBVectorStore

        # in-memory
        vector_store = DuckDBVectorStore()

        # persist to disk
        vector_store = DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
        ```

    """

    stores_text: bool = True
    flat_metadata: bool = True

    database_name: str
    table_name: str
    # schema_name: Optional[str] # TODO: support schema name
    embed_dim: Optional[int]
    # hybrid_search: Optional[bool] # TODO: support hybrid search
    text_search_config: Optional[dict]
    persist_dir: str

    _shared_conn: Optional[duckdb.DuckDBPyConnection] = PrivateAttr(default=None)
    _thread_local: threading.local = PrivateAttr(default_factory=threading.local)

    _is_initialized: bool = PrivateAttr(default=False)
    _database_path: Optional[str] = PrivateAttr()

    def __init__(
        self,
        database_name: str = ":memory:",
        table_name: str = "documents",
        embed_dim: Optional[int] = None,
        # https://duckdb.org/docs/extensions/full_text_search
        text_search_config: Optional[dict] = None,
        persist_dir: str = "./storage",
        client: Optional[duckdb.DuckDBPyConnection] = None,
        **kwargs: Any,  # noqa: ARG002
    ) -> None:
        """Init params."""
        if text_search_config is None:
            text_search_config = DEFAULT_TEXT_SEARCH_CONFIG

        fields = {
            "database_name": database_name,
            "table_name": table_name,
            "embed_dim": embed_dim,
            "text_search_config": text_search_config,
            "persist_dir": persist_dir,
        }

        if client is not None:
            self._shared_conn = client

        super().__init__(stores_text=True, **fields)

        _ = self._initialize_table(self.client, self.table_name, self.embed_dim)

    @classmethod
    def from_local(
        cls,
        database_path: str,
        table_name: str = "documents",
        # schema_name: Optional[str] = "main",
        embed_dim: Optional[int] = None,
        # hybrid_search: Optional[bool] = False,
        text_search_config: Optional[dict] = None,
        **kwargs: Any,
    ) -> "DuckDBVectorStore":
        """Load a DuckDB vector store from a local file."""
        db_path = Path(database_path)

        return cls(
            database_name=db_path.name,
            table_name=table_name,
            embed_dim=embed_dim,
            text_search_config=text_search_config,
            persist_dir=str(db_path.parent),
            **kwargs,
        )

    @classmethod
    def from_params(
        cls,
        database_name: str = ":memory:",
        table_name: str = "documents",
        # schema_name: Optional[str] = "main",
        embed_dim: Optional[int] = None,
        # hybrid_search: Optional[bool] = False,
        text_search_config: Optional[dict] = None,
        persist_dir: str = "./storage",
        **kwargs: Any,
    ) -> "DuckDBVectorStore":
        return cls(
            database_name=database_name,
            table_name=table_name,
            # schema_name=schema_name,
            embed_dim=embed_dim,
            # hybrid_search=hybrid_search,
            text_search_config=text_search_config,
            persist_dir=persist_dir,
            **kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "DuckDBVectorStore"

    @property
    def client(self) -> duckdb.DuckDBPyConnection:
        """Return client."""
        if self._shared_conn is None:
            self._shared_conn = self._connect(self.database_name, self.persist_dir)

        if not hasattr(self._thread_local, "conn") or self._thread_local.conn is None:
            self._thread_local.conn = self._shared_conn.cursor()

        return self._thread_local.conn

    @classmethod
    def _connect(
        cls, database_name: str, persist_dir: str
    ) -> duckdb.DuckDBPyConnection:
        """Connect to the DuckDB database -- create the data persistence directory if it doesn't exist."""
        database_connection = database_name

        if database_name != ":memory:":
            persist_path = Path(persist_dir)

            if not persist_path.exists():
                persist_path.mkdir(parents=True, exist_ok=True)

            database_connection = str(persist_path / database_name)

        return duckdb.connect(database_connection)

    @property
    def table(self) -> duckdb.DuckDBPyRelation:
        """Return the table for the connection to the DuckDB database."""
        return self.client.table(self.table_name)

    @classmethod
    def _get_embedding_type(cls, embed_dim: Optional[int]) -> str:
        return f"FLOAT[{embed_dim}]" if embed_dim is not None else "FLOAT[]"

    @classmethod
    def _initialize_table(
        cls, conn: duckdb.DuckDBPyConnection, table_name: str, embed_dim: Optional[int]
    ) -> None:
        """Initialize the DuckDB Database, extensions, and documents table."""
        home_dir = Path.home()
        conn.execute(f"SET home_directory='{home_dir}';")
        conn.install_extension("json")
        conn.load_extension("json")
        conn.install_extension("fts")
        conn.load_extension("fts")

        embedding_type = cls._get_embedding_type(embed_dim)

        conn.begin().execute(f"""
            CREATE TABLE IF NOT EXISTS {table_name}  (
                node_id VARCHAR,
                text TEXT,
                embedding {embedding_type},
                metadata_ JSON
            );
        """).commit()

        table = conn.table(table_name)

        required_columns = ["node_id", "text", "embedding", "metadata_"]
        table_columns = table.describe().columns

        for column in required_columns:
            if column not in table_columns:
                raise DuckDBTableIncorrectColumnsError(
                    table_name, required_columns, table_columns
                )

    def _node_to_arrow_row(self, node: BaseNode) -> dict:
        return {
            "node_id": node.node_id,
            "text": node.get_content(metadata_mode=MetadataMode.NONE),
            "embedding": node.get_embedding(),
            "metadata_": node_to_metadata_dict(
                node, remove_text=True, flat_metadata=self.flat_metadata
            ),
        }

    def _arrow_row_to_node(self, row_dict: dict) -> BaseNode:
        node = metadata_dict_to_node(
            metadata=json.loads(row_dict["metadata_"]), text=row_dict["text"]
        )
        node.embedding = row_dict["embedding"]

        return node

    def _arrow_row_to_query_result(self, rows: list[dict]) -> VectorStoreQueryResult:
        nodes = []
        similarities = []
        ids = []

        for row in rows:
            node = self._arrow_row_to_node(row)
            nodes.append(node)
            ids.append(row["node_id"])
            similarities.append(row["score"])

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

    @override
    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:  # noqa: ARG002
        """Query the vector store for top k most similar nodes."""
        filter_expression = self._build_metadata_filter_expressions(
            metadata_filters=query.filters
        )

        inner_query = self.table.select(
            StarExpression(),
            FunctionExpression(
                "array_cosine_similarity"
                if self.embed_dim is not None
                else "list_cosine_similarity",
                ColumnExpression("embedding"),
                ConstantExpression(query.query_embedding).cast(
                    self._get_embedding_type(self.embed_dim)
                ),
            ).alias("score"),
        ).filter(filter_expression)

        outer_query = (
            inner_query.select(
                ColumnExpression("node_id"),
                ColumnExpression("text"),
                ColumnExpression("embedding"),
                ColumnExpression("metadata_"),
                ColumnExpression("score"),
            )
            .filter(
                ColumnExpression("score").isnotnull(),
            )
            .sort(
                ColumnExpression("score").desc(),
            )
            .limit(
                query.similarity_top_k,
            )
        )

        command = outer_query.sql_query()

        rows = self.client.execute(command).arrow().to_pylist()

        return self._arrow_row_to_query_result(rows)

    @override
    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:  # noqa: ARG002
        """Query the vector store for top k most similar nodes."""
        return await asyncio.to_thread(self.query, query, **kwargs)

    @override
    def add(self, nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]:  # noqa: ARG002
        """Add nodes to the vector store."""
        rows: list[dict[str, Any]] = [self._node_to_arrow_row(node) for node in nodes]

        arrow_table = pyarrow.Table.from_pylist(rows)
        self.client.from_arrow(arrow_table).insert_into(self.table.alias)
        return [node.node_id for node in nodes]

    @override
    async def async_add(
        self, nodes: Sequence[BaseNode], **add_kwargs: Any
    ) -> list[str]:  # noqa: ARG002
        """Add nodes to the vector store."""
        return await asyncio.to_thread(self.add, nodes, **add_kwargs)

    @override
    def get_nodes(
        self,
        node_ids: Optional[list[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **get_kwargs: Any,
    ) -> list[BaseNode]:  # noqa: ARG002
        """Get nodes using node_ids and/or filters. If both are provided, both are considered."""
        filter_expression = self._build_node_id_metadata_filter_expression(
            node_ids=node_ids,
            filters=filters,
        )

        command = self.table.filter(filter_expression).sql_query()

        rows = self.client.execute(command).arrow().to_pylist()

        return [self._arrow_row_to_node(row) for row in rows]

    @override
    async def aget_nodes(
        self,
        node_ids: Optional[list[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **get_kwargs: Any,
    ) -> list[BaseNode]:  # noqa: ARG002
        """Get nodes using node_ids and/or filters. If both are provided, both are considered."""
        return await asyncio.to_thread(self.get_nodes, node_ids, filters, **get_kwargs)

    @override
    def delete_nodes(
        self,
        node_ids: Optional[list[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:  # noqa: ARG002
        """Delete nodes using node_ids and/or filters. If both are provided, both are considered."""
        filter_expression = self._build_node_id_metadata_filter_expression(
            node_ids=node_ids,
            filters=filters,
        )

        command = f"DELETE FROM {self.table.alias} WHERE {filter_expression}"

        self.client.execute(command)

    @override
    async def adelete_nodes(
        self,
        node_ids: Optional[list[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:  # noqa: ARG002
        """Delete nodes using node_ids and/or filters. If both are provided, both are considered."""
        return await asyncio.to_thread(
            self.delete_nodes, node_ids, filters, **delete_kwargs
        )

    @override
    def clear(self, **clear_kwargs: Any) -> None:  # noqa: ARG002
        """Clear the vector store."""
        command = f"DELETE FROM {self.table.alias}"

        self.client.execute(command)

    @override
    async def aclear(self, **clear_kwargs: Any) -> None:  # noqa: ARG002
        """Clear the vector store."""
        return await asyncio.to_thread(self.clear, **clear_kwargs)

    @override
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:  # noqa: ARG002
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        where_clause = self._build_metadata_filter_expression(
            "ref_doc_id", ref_doc_id, FilterOperator.EQ
        )

        command = f"DELETE FROM {self.table.alias} WHERE {where_clause}"

        self.client.execute(command)

    @override
    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:  # noqa: ARG002
        """
        Delete nodes using with ref_doc_id.

        """
        return await asyncio.to_thread(self.delete, ref_doc_id, **delete_kwargs)

    def _build_node_id_metadata_filter_expression(
        self,
        node_ids: Optional[list[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> Expression:
        filter_expression = Expression(True)

        if filters is not None:
            filter_expression = self._build_metadata_filter_expressions(
                metadata_filters=filters
            )

        if node_ids is not None:
            node_id_expression = FunctionExpression(
                "list_contains",
                ConstantExpression(node_ids),
                ColumnExpression("node_id"),
            )

            filter_expression = filter_expression.__and__(node_id_expression)

        return filter_expression

    def _build_metadata_filter_expression(
        self, key: str, value: Any, operator: FilterOperator
    ) -> Expression:
        metadata_column = ColumnExpression(f"metadata_.{key}")

        sample_value = value[0] if isinstance(value, list) else value
        value_type = filter_value_type_to_duckdb_type.get(type(sample_value))

        metadata_type_expression = FunctionExpression(
            "json_type",
            ColumnExpression("metadata_"),
            ConstantExpression(f"$.{key}"),
        )

        if value_type is None:
            # If the value is a JSON Null, we want to swap the 'Null' for an actual null
            metadata_column = CaseExpression(
                condition=metadata_type_expression.__eq__(ConstantExpression("NULL")),
                value=ConstantExpression(None),
            ).otherwise(metadata_column)

        if value_type == VARCHAR:
            # If the value is a string, it means the column is a JSON string
            # and so we need to unpack it otherwise we'll get back a JSON string (a string wrapped in quotes)
            # https://github.com/duckdb/duckdb/issues/17681
            metadata_column = FunctionExpression(
                "json_extract_string",
                ColumnExpression("metadata_"),
                ConstantExpression(f"$.{key}"),
            )

        metadata_value = ConstantExpression(value)

        return self._build_filter_expression(metadata_column, metadata_value, operator)

    def _build_filter_expression(
        self, column: Expression, value: Expression, operator: FilterOperator
    ) -> Expression:
        """
        Build a filter expression for a given column and value.

        Args:
            column: The key in the document to use in the filter.
            value: The value to use in the filter.
            operator: The filter operator to use.

        """
        if operator_func := li_filter_to_py_operator.get(operator):
            # We have a straightforward operator, and DuckDB can handle just take the Python operator
            # i.e. FilterOperator.EQ -> `==` (operator.eq)
            # i.e. FilterOperator.GTE -> `>=` (operator.ge)
            # ...
            return operator_func(column, value)

        if operator == FilterOperator.IN:
            # Given a list of values, check to see if the document's value is in the list
            return FunctionExpression(
                "list_contains",  # list_contains(list_to_look_in, element_to_find)
                value,
                column,
            )

        if operator == FilterOperator.NIN:
            # Given a list of values, check to see if the document's value is not in the list
            return FunctionExpression(
                "list_contains",  # list_contains(list_to_look_in, element_to_find)
                value,
                column,
            ).__eq__(ConstantExpression(False))

        if operator == FilterOperator.CONTAINS:
            # filter_value is in the document value
            # This will never be true so long as the DuckDB vector store
            # requires flat metadata
            return Expression(False)
            # return FunctionExpression(
            #     "list_contains", # list_contains(list_to_look_in, element_to_find)
            #     value,
            #     column,
            # )
        if operator == FilterOperator.ANY:
            # Check if the intersection of the two lists has at least one element
            return FunctionExpression(
                "list_has_any",
                column,
                value,
            )

        if operator == FilterOperator.ALL:
            # Check if all of the provided values are in the document's value
            return FunctionExpression(
                "list_has_all",  # list_has_all(list, sub-list)
                column,
                value,
            )

        if operator == FilterOperator.TEXT_MATCH:
            return FunctionExpression(
                "contains",
                column,
                value,
            )

        if operator == FilterOperator.TEXT_MATCH_INSENSITIVE:
            return FunctionExpression(
                "contains",
                FunctionExpression(
                    "lower",
                    column,
                ),
                FunctionExpression(
                    "lower",
                    value,
                ),
            )

        if operator == FilterOperator.IS_EMPTY:
            # column is null or the array is empty
            return column.isnull().__or__(
                CaseExpression(
                    condition=FunctionExpression("typeof", column).__eq__(
                        ConstantExpression("ARRAY")
                    ),
                    value=FunctionExpression("length", column).__eq__(
                        ConstantExpression(0)
                    ),
                )
            )

        raise NotImplementedError(f"Unsupported operator: {operator}")

    def _build_metadata_filter_expressions(
        self, metadata_filters: Optional[MetadataFilters] = None
    ) -> Expression:
        expressions: list[Expression] = []

        if metadata_filters is None or len(metadata_filters.filters) == 0:
            return Expression(True)

        for metadata_filter in metadata_filters.filters:
            if isinstance(metadata_filter, MetadataFilter):
                expressions.append(
                    self._build_metadata_filter_expression(
                        metadata_filter.key,
                        metadata_filter.value,
                        metadata_filter.operator,
                    )
                )
            elif isinstance(metadata_filter, MetadataFilters):
                expressions.append(
                    self._build_metadata_filter_expressions(metadata_filter)
                )
            else:
                raise NotImplementedError(
                    f"Unsupported metadata filter: {metadata_filter}"
                )

        final_expression: Expression = expressions[0]

        for expression in expressions[1:]:
            # We will do an implicit AND for NOT conditions
            if metadata_filters.condition in [FilterCondition.AND, FilterCondition.NOT]:
                final_expression = final_expression.__and__(expression)
                continue

            if metadata_filters.condition == FilterCondition.OR:
                final_expression = final_expression.__or__(expression)
                continue

            raise NotImplementedError(
                f"Unsupported condition: {metadata_filters.condition}"
            )

        if metadata_filters.condition == FilterCondition.NOT:
            final_expression = final_expression.__invert__()

        return final_expression

client property #

client: DuckDBPyConnection

Return client.

table property #

table: DuckDBPyRelation

Return the table for the connection to the DuckDB database.

from_local classmethod #

from_local(database_path: str, table_name: str = 'documents', embed_dim: Optional[int] = None, text_search_config: Optional[dict] = None, **kwargs: Any) -> DuckDBVectorStore

Load a DuckDB vector store from a local file.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
@classmethod
def from_local(
    cls,
    database_path: str,
    table_name: str = "documents",
    # schema_name: Optional[str] = "main",
    embed_dim: Optional[int] = None,
    # hybrid_search: Optional[bool] = False,
    text_search_config: Optional[dict] = None,
    **kwargs: Any,
) -> "DuckDBVectorStore":
    """Load a DuckDB vector store from a local file."""
    db_path = Path(database_path)

    return cls(
        database_name=db_path.name,
        table_name=table_name,
        embed_dim=embed_dim,
        text_search_config=text_search_config,
        persist_dir=str(db_path.parent),
        **kwargs,
    )

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query the vector store for top k most similar nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
@override
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:  # noqa: ARG002
    """Query the vector store for top k most similar nodes."""
    filter_expression = self._build_metadata_filter_expressions(
        metadata_filters=query.filters
    )

    inner_query = self.table.select(
        StarExpression(),
        FunctionExpression(
            "array_cosine_similarity"
            if self.embed_dim is not None
            else "list_cosine_similarity",
            ColumnExpression("embedding"),
            ConstantExpression(query.query_embedding).cast(
                self._get_embedding_type(self.embed_dim)
            ),
        ).alias("score"),
    ).filter(filter_expression)

    outer_query = (
        inner_query.select(
            ColumnExpression("node_id"),
            ColumnExpression("text"),
            ColumnExpression("embedding"),
            ColumnExpression("metadata_"),
            ColumnExpression("score"),
        )
        .filter(
            ColumnExpression("score").isnotnull(),
        )
        .sort(
            ColumnExpression("score").desc(),
        )
        .limit(
            query.similarity_top_k,
        )
    )

    command = outer_query.sql_query()

    rows = self.client.execute(command).arrow().to_pylist()

    return self._arrow_row_to_query_result(rows)

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query the vector store for top k most similar nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
356
357
358
359
360
361
@override
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:  # noqa: ARG002
    """Query the vector store for top k most similar nodes."""
    return await asyncio.to_thread(self.query, query, **kwargs)

add #

add(nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]

Add nodes to the vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
363
364
365
366
367
368
369
370
@override
def add(self, nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]:  # noqa: ARG002
    """Add nodes to the vector store."""
    rows: list[dict[str, Any]] = [self._node_to_arrow_row(node) for node in nodes]

    arrow_table = pyarrow.Table.from_pylist(rows)
    self.client.from_arrow(arrow_table).insert_into(self.table.alias)
    return [node.node_id for node in nodes]

async_add async #

async_add(nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]

Add nodes to the vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
372
373
374
375
376
377
@override
async def async_add(
    self, nodes: Sequence[BaseNode], **add_kwargs: Any
) -> list[str]:  # noqa: ARG002
    """Add nodes to the vector store."""
    return await asyncio.to_thread(self.add, nodes, **add_kwargs)

get_nodes #

get_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **get_kwargs: Any) -> list[BaseNode]

Get nodes using node_ids and/or filters. If both are provided, both are considered.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@override
def get_nodes(
    self,
    node_ids: Optional[list[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **get_kwargs: Any,
) -> list[BaseNode]:  # noqa: ARG002
    """Get nodes using node_ids and/or filters. If both are provided, both are considered."""
    filter_expression = self._build_node_id_metadata_filter_expression(
        node_ids=node_ids,
        filters=filters,
    )

    command = self.table.filter(filter_expression).sql_query()

    rows = self.client.execute(command).arrow().to_pylist()

    return [self._arrow_row_to_node(row) for row in rows]

aget_nodes async #

aget_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **get_kwargs: Any) -> list[BaseNode]

Get nodes using node_ids and/or filters. If both are provided, both are considered.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
398
399
400
401
402
403
404
405
406
@override
async def aget_nodes(
    self,
    node_ids: Optional[list[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **get_kwargs: Any,
) -> list[BaseNode]:  # noqa: ARG002
    """Get nodes using node_ids and/or filters. If both are provided, both are considered."""
    return await asyncio.to_thread(self.get_nodes, node_ids, filters, **get_kwargs)

delete_nodes #

delete_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Delete nodes using node_ids and/or filters. If both are provided, both are considered.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@override
def delete_nodes(
    self,
    node_ids: Optional[list[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:  # noqa: ARG002
    """Delete nodes using node_ids and/or filters. If both are provided, both are considered."""
    filter_expression = self._build_node_id_metadata_filter_expression(
        node_ids=node_ids,
        filters=filters,
    )

    command = f"DELETE FROM {self.table.alias} WHERE {filter_expression}"

    self.client.execute(command)

adelete_nodes async #

adelete_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Delete nodes using node_ids and/or filters. If both are provided, both are considered.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
425
426
427
428
429
430
431
432
433
434
435
@override
async def adelete_nodes(
    self,
    node_ids: Optional[list[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:  # noqa: ARG002
    """Delete nodes using node_ids and/or filters. If both are provided, both are considered."""
    return await asyncio.to_thread(
        self.delete_nodes, node_ids, filters, **delete_kwargs
    )

clear #

clear(**clear_kwargs: Any) -> None

Clear the vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
437
438
439
440
441
442
@override
def clear(self, **clear_kwargs: Any) -> None:  # noqa: ARG002
    """Clear the vector store."""
    command = f"DELETE FROM {self.table.alias}"

    self.client.execute(command)

aclear async #

aclear(**clear_kwargs: Any) -> None

Clear the vector store.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
444
445
446
447
@override
async def aclear(self, **clear_kwargs: Any) -> None:  # noqa: ARG002
    """Clear the vector store."""
    return await asyncio.to_thread(self.clear, **clear_kwargs)

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
@override
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:  # noqa: ARG002
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    where_clause = self._build_metadata_filter_expression(
        "ref_doc_id", ref_doc_id, FilterOperator.EQ
    )

    command = f"DELETE FROM {self.table.alias} WHERE {where_clause}"

    self.client.execute(command)

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-duckdb/llama_index/vector_stores/duckdb/base.py
466
467
468
469
470
471
472
@override
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:  # noqa: ARG002
    """
    Delete nodes using with ref_doc_id.

    """
    return await asyncio.to_thread(self.delete, ref_doc_id, **delete_kwargs)