Skip to content

Azure openai

AzureOpenAIEmbedding #

Bases: OpenAIEmbedding

Source code in llama-index-integrations/embeddings/llama-index-embeddings-azure-openai/llama_index/embeddings/azure_openai/base.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class AzureOpenAIEmbedding(OpenAIEmbedding):
    azure_endpoint: Optional[str] = Field(
        default=None, description="The Azure endpoint to use."
    )
    azure_deployment: Optional[str] = Field(
        default=None, description="The Azure deployment to use."
    )

    api_base: str = Field(default="", description="The base URL for Azure deployment.")
    api_version: str = Field(
        default="", description="The version for Azure OpenAI API."
    )

    azure_ad_token_provider: AzureADTokenProvider = Field(
        default=None, description="Callback function to provide Azure AD token."
    )

    _client: AzureOpenAI = PrivateAttr()
    _aclient: AsyncAzureOpenAI = PrivateAttr()

    def __init__(
        self,
        mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
        model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        api_version: Optional[str] = None,
        # azure specific
        azure_endpoint: Optional[str] = None,
        azure_deployment: Optional[str] = None,
        azure_ad_token_provider: AzureADTokenProvider = None,
        deployment_name: Optional[str] = None,
        max_retries: int = 10,
        reuse_client: bool = True,
        callback_manager: Optional[CallbackManager] = None,
        # custom httpx client
        http_client: Optional[httpx.Client] = None,
        **kwargs: Any,
    ):
        azure_endpoint = get_from_param_or_env(
            "azure_endpoint", azure_endpoint, "AZURE_OPENAI_ENDPOINT", ""
        )

        azure_deployment = resolve_from_aliases(
            azure_deployment,
            deployment_name,
        )

        super().__init__(
            mode=mode,
            model=model,
            embed_batch_size=embed_batch_size,
            additional_kwargs=additional_kwargs,
            api_key=api_key,
            api_version=api_version,
            azure_endpoint=azure_endpoint,
            azure_deployment=azure_deployment,
            azure_ad_token_provider=azure_ad_token_provider,
            max_retries=max_retries,
            reuse_client=reuse_client,
            callback_manager=callback_manager,
            http_client=http_client,
            **kwargs,
        )

    @root_validator(pre=True)
    def validate_env(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Validate necessary credentials are set."""
        if (
            values["api_base"] == "https://api.openai.com/v1"
            and values["azure_endpoint"] is None
        ):
            raise ValueError(
                "You must set OPENAI_API_BASE to your Azure endpoint. "
                "It should look like https://YOUR_RESOURCE_NAME.openai.azure.com/"
            )
        if values["api_version"] is None:
            raise ValueError("You must set OPENAI_API_VERSION for Azure OpenAI.")

        return values

    def _get_client(self) -> AzureOpenAI:
        if not self.reuse_client:
            return AzureOpenAI(**self._get_credential_kwargs())

        if self._client is None:
            self._client = AzureOpenAI(**self._get_credential_kwargs())
        return self._client

    def _get_aclient(self) -> AsyncAzureOpenAI:
        if not self.reuse_client:
            return AsyncAzureOpenAI(**self._get_credential_kwargs())

        if self._aclient is None:
            self._aclient = AsyncAzureOpenAI(**self._get_credential_kwargs())
        return self._aclient

    def _get_credential_kwargs(self) -> Dict[str, Any]:
        return {
            "api_key": self.api_key,
            "azure_ad_token_provider": self.azure_ad_token_provider,
            "azure_endpoint": self.azure_endpoint,
            "azure_deployment": self.azure_deployment,
            "api_version": self.api_version,
            "default_headers": self.default_headers,
            "http_client": self._http_client,
        }

    @classmethod
    def class_name(cls) -> str:
        return "AzureOpenAIEmbedding"

validate_env #

validate_env(values: Dict[str, Any]) -> Dict[str, Any]

Validate necessary credentials are set.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-azure-openai/llama_index/embeddings/azure_openai/base.py
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@root_validator(pre=True)
def validate_env(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Validate necessary credentials are set."""
    if (
        values["api_base"] == "https://api.openai.com/v1"
        and values["azure_endpoint"] is None
    ):
        raise ValueError(
            "You must set OPENAI_API_BASE to your Azure endpoint. "
            "It should look like https://YOUR_RESOURCE_NAME.openai.azure.com/"
        )
    if values["api_version"] is None:
        raise ValueError("You must set OPENAI_API_VERSION for Azure OpenAI.")

    return values