Dappier
DappierAIRecommendationsToolSpec #
Bases: BaseToolSpec
Dappier AI Recommendations tool spec.
Provides AI-powered recommendations across various domains such as Sports News, Lifestyle News, iHeartDogs, iHeartCats, GreenMonster, WISH-TV and 9 and 10 News.
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
get_sports_news_recommendations #
get_sports_news_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves sports news.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch sports news. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
get_lifestyle_news_recommendations #
get_lifestyle_news_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves lifestyle news.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch lifestyle news. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
get_iheartdogs_recommendations #
get_iheartdogs_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves iHeartDogs articles - a dog care expert.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch dog care articles. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
get_iheartcats_recommendations #
get_iheartcats_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves iHeartCats articles - a cat care expert.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch cat care articles. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
get_greenmonster_recommendations #
get_greenmonster_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves GreenMonster articles - Compassionate Living Guide.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch compassionate living guides. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
get_wishtv_recommendations #
get_wishtv_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves news articles.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch news articles. |
required |
similarity_top_k
|
int
|
The number of top documents to retrieve based on similarity. Defaults to 10. |
10
|
ref
|
Optional[str]
|
The site domain where recommendations should be displayed. Defaults to None. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. Defaults to 0. |
0
|
search_algorithm
|
str
|
The search algorithm to use. Defaults to "most_recent". |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
get_nine_and_ten_news_recommendations #
get_nine_and_ten_news_recommendations(query: str, similarity_top_k: int = 10, ref: Optional[str] = None, num_articles_ref: int = 0, search_algorithm: Literal['most_recent', 'semantic', 'most_recent_semantic', 'trending'] = 'most_recent') -> str
Retrieves up-to-date local news for Northern Michigan, Cadillac and Traverse City.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query to fetch local news. |
required |
similarity_top_k
|
int
|
Number of documents to return. |
10
|
ref
|
Optional[str]
|
Site domain where recommendations should be displayed. |
None
|
num_articles_ref
|
int
|
Minimum number of articles to return from the reference domain. |
0
|
search_algorithm
|
str
|
The search algorithm to use. |
'most_recent'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message for the user specified query. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/ai_recommendations/base.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
DappierRealTimeSearchToolSpec #
Bases: BaseToolSpec
Dappier Real Time Search tool spec.
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/real_time_search/base.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
search_real_time_data #
search_real_time_data(query: str) -> str
Performs a real-time data search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
The user-provided input string for retrieving |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message containing the real-time data results. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/real_time_search/base.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
search_stock_market_data #
search_stock_market_data(query: str) -> str
Performs a stock market data search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
The user-provided input string for retrieving |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A response message containing the stock market data results. |
Source code in llama-index-integrations/tools/llama-index-tools-dappier/llama_index/tools/dappier/real_time_search/base.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|