Lantern Vector Store¶
In this notebook we are going to show how to use Postgresql and Lantern to perform vector searches in LlamaIndex
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
In [ ]:
Copied!
%pip install llama-index-vector-stores-lantern
%pip install llama-index-embeddings-openai
%pip install llama-index-vector-stores-lantern
%pip install llama-index-embeddings-openai
In [ ]:
Copied!
!pip install psycopg2-binary llama-index asyncpg
!pip install psycopg2-binary llama-index asyncpg
In [ ]:
Copied!
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lantern import LanternVectorStore
import textwrap
import openai
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lantern import LanternVectorStore
import textwrap
import openai
Setup OpenAI¶
The first step is to configure the openai key. It will be used to created embeddings for the documents loaded into the index
In [ ]:
Copied!
import os
os.environ["OPENAI_API_KEY"] = "<your_key>"
openai.api_key = "<your_key>"
import os
os.environ["OPENAI_API_KEY"] = ""
openai.api_key = ""
Download Data
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Loading documents¶
Load the documents stored in the data/paul_graham/
using the SimpleDirectoryReader
In [ ]:
Copied!
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
Create the Database¶
Using an existing postgres running at localhost, create the database we'll be using.
In [ ]:
Copied!
import psycopg2
connection_string = "postgresql://postgres:postgres@localhost:5432"
db_name = "postgres"
conn = psycopg2.connect(connection_string)
conn.autocommit = True
with conn.cursor() as c:
c.execute(f"DROP DATABASE IF EXISTS {db_name}")
c.execute(f"CREATE DATABASE {db_name}")
import psycopg2
connection_string = "postgresql://postgres:postgres@localhost:5432"
db_name = "postgres"
conn = psycopg2.connect(connection_string)
conn.autocommit = True
with conn.cursor() as c:
c.execute(f"DROP DATABASE IF EXISTS {db_name}")
c.execute(f"CREATE DATABASE {db_name}")
In [ ]:
Copied!
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
# Setup global settings with embedding model
# So query strings will be transformed to embeddings and HNSW index will be used
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
# Setup global settings with embedding model
# So query strings will be transformed to embeddings and HNSW index will be used
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
Create the index¶
Here we create an index backed by Postgres using the documents loaded previously. LanternVectorStore takes a few arguments.
In [ ]:
Copied!
from sqlalchemy import make_url
url = make_url(connection_string)
vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay",
embed_dim=1536, # openai embedding dimension
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, show_progress=True
)
query_engine = index.as_query_engine()
from sqlalchemy import make_url
url = make_url(connection_string)
vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay",
embed_dim=1536, # openai embedding dimension
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, show_progress=True
)
query_engine = index.as_query_engine()
Query the index¶
We can now ask questions using our index.
In [ ]:
Copied!
response = query_engine.query("What did the author do?")
response = query_engine.query("What did the author do?")
In [ ]:
Copied!
print(textwrap.fill(str(response), 100))
print(textwrap.fill(str(response), 100))
In [ ]:
Copied!
response = query_engine.query("What happened in the mid 1980s?")
response = query_engine.query("What happened in the mid 1980s?")
In [ ]:
Copied!
print(textwrap.fill(str(response), 100))
print(textwrap.fill(str(response), 100))
Querying existing index¶
In [ ]:
Copied!
vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay",
embed_dim=1536, # openai embedding dimension
m=16, # HNSW M parameter
ef_construction=128, # HNSW ef construction parameter
ef=64, # HNSW ef search parameter
)
# Read more about HNSW parameters here: https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
query_engine = index.as_query_engine()
vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay",
embed_dim=1536, # openai embedding dimension
m=16, # HNSW M parameter
ef_construction=128, # HNSW ef construction parameter
ef=64, # HNSW ef search parameter
)
# Read more about HNSW parameters here: https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
query_engine = index.as_query_engine()
In [ ]:
Copied!
response = query_engine.query("What did the author do?")
response = query_engine.query("What did the author do?")
In [ ]:
Copied!
print(textwrap.fill(str(response), 100))
print(textwrap.fill(str(response), 100))
Hybrid Search¶
To enable hybrid search, you need to:
- pass in
hybrid_search=True
when constructing theLanternVectorStore
(and optionally configuretext_search_config
with the desired language) - pass in
vector_store_query_mode="hybrid"
when constructing the query engine (this config is passed to the retriever under the hood). You can also optionally set thesparse_top_k
to configure how many results we should obtain from sparse text search (default is using the same value assimilarity_top_k
).
In [ ]:
Copied!
from sqlalchemy import make_url
url = make_url(connection_string)
hybrid_vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay_hybrid_search",
embed_dim=1536, # openai embedding dimension
hybrid_search=True,
text_search_config="english",
)
storage_context = StorageContext.from_defaults(
vector_store=hybrid_vector_store
)
hybrid_index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
from sqlalchemy import make_url
url = make_url(connection_string)
hybrid_vector_store = LanternVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="paul_graham_essay_hybrid_search",
embed_dim=1536, # openai embedding dimension
hybrid_search=True,
text_search_config="english",
)
storage_context = StorageContext.from_defaults(
vector_store=hybrid_vector_store
)
hybrid_index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
In [ ]:
Copied!
hybrid_query_engine = hybrid_index.as_query_engine(
vector_store_query_mode="hybrid", sparse_top_k=2
)
hybrid_response = hybrid_query_engine.query(
"Who does Paul Graham think of with the word schtick"
)
hybrid_query_engine = hybrid_index.as_query_engine(
vector_store_query_mode="hybrid", sparse_top_k=2
)
hybrid_response = hybrid_query_engine.query(
"Who does Paul Graham think of with the word schtick"
)
In [ ]:
Copied!
print(hybrid_response)
print(hybrid_response)