Sentence Embedding Optimizer¶
In [ ]:
Copied!
%pip install llama-index-readers-wikipedia
%pip install llama-index-readers-wikipedia
In [ ]:
Copied!
# My OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY"
# My OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY"
Setup¶
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
In [ ]:
Copied!
from llama_index.core import download_loader
from llama_index.readers.wikipedia import WikipediaReader
loader = WikipediaReader()
documents = loader.load_data(pages=["Berlin"])
from llama_index.core import download_loader
from llama_index.readers.wikipedia import WikipediaReader
loader = WikipediaReader()
documents = loader.load_data(pages=["Berlin"])
In [ ]:
Copied!
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(documents)
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(documents)
<class 'llama_index.readers.schema.base.Document'>
INFO:root:> [build_index_from_documents] Total LLM token usage: 0 tokens INFO:root:> [build_index_from_documents] Total embedding token usage: 18390 tokens
Compare query with and without optimization for LLM token usage, Embedding Model usage on query, Embedding model usage for optimizer, and total time.
In [ ]:
Copied!
import time
from llama_index.core import VectorStoreIndex
from llama_index.core.postprocessor import SentenceEmbeddingOptimizer
print("Without optimization")
start_time = time.time()
query_engine = index.as_query_engine()
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
print("With optimization")
start_time = time.time()
query_engine = index.as_query_engine(
node_postprocessors=[SentenceEmbeddingOptimizer(percentile_cutoff=0.5)]
)
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
print("Alternate optimization cutoff")
start_time = time.time()
query_engine = index.as_query_engine(
node_postprocessors=[SentenceEmbeddingOptimizer(threshold_cutoff=0.7)]
)
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
import time
from llama_index.core import VectorStoreIndex
from llama_index.core.postprocessor import SentenceEmbeddingOptimizer
print("Without optimization")
start_time = time.time()
query_engine = index.as_query_engine()
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
print("With optimization")
start_time = time.time()
query_engine = index.as_query_engine(
node_postprocessors=[SentenceEmbeddingOptimizer(percentile_cutoff=0.5)]
)
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
print("Alternate optimization cutoff")
start_time = time.time()
query_engine = index.as_query_engine(
node_postprocessors=[SentenceEmbeddingOptimizer(threshold_cutoff=0.7)]
)
res = query_engine.query("What is the population of Berlin?")
end_time = time.time()
print("Total time elapsed: {}".format(end_time - start_time))
print("Answer: {}".format(res))
Without optimization
INFO:root:> [query] Total LLM token usage: 3545 tokens INFO:root:> [query] Total embedding token usage: 7 tokens
Total time elapsed: 2.8928110599517822 Answer: The population of Berlin in 1949 was approximately 2.2 million inhabitants. After the fall of the Berlin Wall in 1989, the population of Berlin increased to approximately 3.7 million inhabitants. With optimization
INFO:root:> [optimize] Total embedding token usage: 7 tokens INFO:root:> [query] Total LLM token usage: 1779 tokens INFO:root:> [query] Total embedding token usage: 7 tokens
Total time elapsed: 2.346346139907837 Answer: The population of Berlin is around 4.5 million. Alternate optimization cutoff
INFO:root:> [optimize] Total embedding token usage: 7 tokens INFO:root:> [query] Total LLM token usage: 3215 tokens INFO:root:> [query] Total embedding token usage: 7 tokens
Total time elapsed: 2.101111888885498 Answer: The population of Berlin is around 4.5 million.