Building Retrieval from Scratch¶
In this tutorial, we show you how to build a standard retriever against a vector database, that will fetch nodes via top-k similarity.
We use Pinecone as the vector database. We load in nodes using our high-level ingestion abstractions (to see how to build this from scratch, see our previous tutorial!).
We will show how to do the following:
- How to generate a query embedding
- How to query the vector database using different search modes (dense, sparse, hybrid)
- How to parse results into a set of Nodes
- How to put this in a custom retriever
Setup¶
We build an empty Pinecone Index, and define the necessary LlamaIndex wrappers/abstractions so that we can start loading data into Pinecone.
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-readers-file pymupdf
%pip install llama-index-vector-stores-pinecone
%pip install llama-index-embeddings-openai
!pip install llama-index
Build Pinecone Index¶
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
# dimensions are for text-embedding-ada-002
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
pinecone_index = pinecone.Index("quickstart")
# [Optional] drop contents in index
pinecone_index.delete(deleteAll=True)
Create PineconeVectorStore¶
Simple wrapper abstraction to use in LlamaIndex. Wrap in StorageContext so we can easily load in Nodes.
from llama_index.vector_stores.pinecone import PineconeVectorStore
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
Load Documents¶
!mkdir data
!wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
Load into Vector Store¶
Load in documents into the PineconeVectorStore.
NOTE: We use high-level ingestion abstractions here, with VectorStoreIndex.from_documents.
We'll refrain from using VectorStoreIndex
for the rest of this tutorial.
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import StorageContext
splitter = SentenceSplitter(chunk_size=1024)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, transformations=[splitter], storage_context=storage_context
)
Define Vector Retriever¶
Now we're ready to define our retriever against this vector store to retrieve a set of nodes.
We'll show the processes step by step and then wrap it into a function.
query_str = "Can you tell me about the key concepts for safety finetuning"
1. Generate a Query Embedding¶
from llama_index.embeddings.openai import OpenAIEmbedding
embed_model = OpenAIEmbedding()
query_embedding = embed_model.get_query_embedding(query_str)
2. Query the Vector Database¶
We show how to query the vector database with different modes: default, sparse, and hybrid.
We first construct a VectorStoreQuery
and then query the vector db.
# construct vector store query
from llama_index.core.vector_stores import VectorStoreQuery
query_mode = "default"
# query_mode = "sparse"
# query_mode = "hybrid"
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding, similarity_top_k=2, mode=query_mode
)
# returns a VectorStoreQueryResult
query_result = vector_store.query(vector_store_query)
query_result
3. Parse Result into a set of Nodes¶
The VectorStoreQueryResult
returns the set of nodes and similarities. We construct a NodeWithScore
object with this.
from llama_index.core.schema import NodeWithScore
from typing import Optional
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
from llama_index.core.response.notebook_utils import display_source_node
for node in nodes_with_scores:
display_source_node(node, source_length=1000)
4. Put this into a Retriever¶
Let's put this into a Retriever subclass that can plug into the rest of LlamaIndex workflows!
from llama_index.core import QueryBundle
from llama_index.core.retrievers import BaseRetriever
from typing import Any, List
class PineconeRetriever(BaseRetriever):
"""Retriever over a pinecone vector store."""
def __init__(
self,
vector_store: PineconeVectorStore,
embed_model: Any,
query_mode: str = "default",
similarity_top_k: int = 2,
) -> None:
"""Init params."""
self._vector_store = vector_store
self._embed_model = embed_model
self._query_mode = query_mode
self._similarity_top_k = similarity_top_k
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve."""
query_embedding = embed_model.get_query_embedding(query_str)
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding,
similarity_top_k=self._similarity_top_k,
mode=self._query_mode,
)
query_result = vector_store.query(vector_store_query)
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
return nodes_with_scores
retriever = PineconeRetriever(
vector_store, embed_model, query_mode="default", similarity_top_k=2
)
retrieved_nodes = retriever.retrieve(query_str)
for node in retrieved_nodes:
display_source_node(node, source_length=1000)
Plug this into our RetrieverQueryEngine to synthesize a response¶
NOTE: We'll cover more on how to build response synthesis from scratch in future tutorials!
from llama_index.core.query_engine import RetrieverQueryEngine
query_engine = RetrieverQueryEngine.from_args(retriever)
response = query_engine.query(query_str)
print(str(response))
The key concepts for safety fine-tuning include supervised safety fine-tuning, safety RLHF (Reinforcement Learning from Human Feedback), and safety context distillation. Supervised safety fine-tuning involves gathering adversarial prompts and safe demonstrations to train the model to align with safety guidelines. Safety RLHF integrates safety into the RLHF pipeline by training a safety-specific reward model and gathering challenging adversarial prompts for fine-tuning. Safety context distillation refines the RLHF pipeline by generating safer model responses using a safety preprompt and fine-tuning the model on these responses without the preprompt. These concepts are used to mitigate safety risks and improve the safety of the model's responses.