Maritalk¶
Introduction¶
MariTalk is an assistant developed by the Brazilian company Maritaca AI. MariTalk is based on language models that have been specially trained to understand Portuguese well.
This notebook demonstrates how to use MariTalk with llama-index through a simple example.
Installation¶
If you're opening this Notebook on colab, you will probably need to install LlamaIndex.
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index-llms-maritalk
!pip install llama-index
!pip install llama-index-llms-maritalk
API Key¶
You will need an API key that can be obtained from chat.maritaca.ai ("Chaves da API" section).
In [ ]:
Copied!
from llama_index.core.llms import ChatMessage
from llama_index.llms.maritalk import Maritalk
# To customize your API key, do this
# otherwise it will lookup MARITALK_API_KEY from your env variable
# llm = Maritalk(api_key="<your_maritalk_api_key>")
llm = Maritalk()
# Call chat with a list of messages
messages = [
ChatMessage(
role="system",
content="You are an assistant specialized in suggesting pet names. Given the animal, you must suggest 4 names.",
),
ChatMessage(role="user", content="I have a dog."),
]
response = llm.chat(messages)
print(response)
from llama_index.core.llms import ChatMessage
from llama_index.llms.maritalk import Maritalk
# To customize your API key, do this
# otherwise it will lookup MARITALK_API_KEY from your env variable
# llm = Maritalk(api_key="")
llm = Maritalk()
# Call chat with a list of messages
messages = [
ChatMessage(
role="system",
content="You are an assistant specialized in suggesting pet names. Given the animal, you must suggest 4 names.",
),
ChatMessage(role="user", content="I have a dog."),
]
response = llm.chat(messages)
print(response)
Few-shot examples¶
We recommend using the llm.complete()
method when using the model with few-shot examples
In [ ]:
Copied!
prompt = """Classifique a resenha de filme como "positiva" ou "negativa".
Resenha: Gostei muito do filme, é o melhor do ano!
Classe: positiva
Resenha: O filme deixa muito a desejar.
Classe: negativa
Resenha: Apesar de longo, valeu o ingresso..
Classe:"""
response = llm.complete(prompt, stopping_tokens=["\n"])
print(response)
prompt = """Classifique a resenha de filme como "positiva" ou "negativa".
Resenha: Gostei muito do filme, é o melhor do ano!
Classe: positiva
Resenha: O filme deixa muito a desejar.
Classe: negativa
Resenha: Apesar de longo, valeu o ingresso..
Classe:"""
response = llm.complete(prompt, stopping_tokens=["\n"])
print(response)