In [ ]:
Copied!
%pip install llama-index-llms-openai
%pip install llama-index-llms-openai
In [ ]:
Copied!
# attach to the same event-loop
import nest_asyncio
nest_asyncio.apply()
# attach to the same event-loop
import nest_asyncio
nest_asyncio.apply()
In [ ]:
Copied!
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
# openai.api_key = os.environ["OPENAI_API_KEY"]
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
# openai.api_key = os.environ["OPENAI_API_KEY"]
In [ ]:
Copied!
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import (
FaithfulnessEvaluator,
RelevancyEvaluator,
CorrectnessEvaluator,
)
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import (
FaithfulnessEvaluator,
RelevancyEvaluator,
CorrectnessEvaluator,
)
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
Using GPT-4 here for evaluation
In [ ]:
Copied!
# gpt-4
gpt4 = OpenAI(temperature=0, model="gpt-4")
faithfulness_gpt4 = FaithfulnessEvaluator(llm=gpt4)
relevancy_gpt4 = RelevancyEvaluator(llm=gpt4)
correctness_gpt4 = CorrectnessEvaluator(llm=gpt4)
# gpt-4
gpt4 = OpenAI(temperature=0, model="gpt-4")
faithfulness_gpt4 = FaithfulnessEvaluator(llm=gpt4)
relevancy_gpt4 = RelevancyEvaluator(llm=gpt4)
correctness_gpt4 = CorrectnessEvaluator(llm=gpt4)
In [ ]:
Copied!
documents = SimpleDirectoryReader("./test_wiki_data/").load_data()
documents = SimpleDirectoryReader("./test_wiki_data/").load_data()
In [ ]:
Copied!
# create vector index
llm = OpenAI(temperature=0.3, model="gpt-3.5-turbo")
splitter = SentenceSplitter(chunk_size=512)
vector_index = VectorStoreIndex.from_documents(
documents, transformations=[splitter]
)
# create vector index
llm = OpenAI(temperature=0.3, model="gpt-3.5-turbo")
splitter = SentenceSplitter(chunk_size=512)
vector_index = VectorStoreIndex.from_documents(
documents, transformations=[splitter]
)
Question Generation¶
To run evaluations in batch, you can create the runner and then call the .aevaluate_queries()
function on a list of queries.
First, we can generate some questions and then run evaluation on them.
In [ ]:
Copied!
!pip install spacy datasets span-marker scikit-learn
!pip install spacy datasets span-marker scikit-learn
In [ ]:
Copied!
from llama_index.core.evaluation import DatasetGenerator
dataset_generator = DatasetGenerator.from_documents(documents, llm=llm)
qas = dataset_generator.generate_dataset_from_nodes(num=3)
from llama_index.core.evaluation import DatasetGenerator
dataset_generator = DatasetGenerator.from_documents(documents, llm=llm)
qas = dataset_generator.generate_dataset_from_nodes(num=3)
/home/loganm/llama_index_proper/llama_index/llama_index/evaluation/dataset_generation.py:187: DeprecationWarning: Call to deprecated class DatasetGenerator. (Deprecated in favor of `RagDatasetGenerator` which should be used instead.) return cls( /home/loganm/llama_index_proper/llama_index/llama_index/evaluation/dataset_generation.py:282: DeprecationWarning: Call to deprecated class QueryResponseDataset. (Deprecated in favor of `LabelledRagDataset` which should be used instead.) return QueryResponseDataset(queries=queries, responses=responses_dict)
Running Batch Evaluation¶
Now, we can run our batch evaluation!
In [ ]:
Copied!
from llama_index.core.evaluation import BatchEvalRunner
runner = BatchEvalRunner(
{"faithfulness": faithfulness_gpt4, "relevancy": relevancy_gpt4},
workers=8,
)
eval_results = await runner.aevaluate_queries(
vector_index.as_query_engine(llm=llm), queries=qas.questions
)
# If we had ground-truth answers, we could also include the correctness evaluator like below.
# The correctness evaluator depends on additional kwargs, which are passed in as a dictionary.
# Each question is mapped to a set of kwargs
#
# runner = BatchEvalRunner(
# {"correctness": correctness_gpt4},
# workers=8,
# )
# eval_results = await runner.aevaluate_queries(
# vector_index.as_query_engine(),
# queries=qas.queries,
# reference=[qr[1] for qr in qas.qr_pairs],
# )
from llama_index.core.evaluation import BatchEvalRunner
runner = BatchEvalRunner(
{"faithfulness": faithfulness_gpt4, "relevancy": relevancy_gpt4},
workers=8,
)
eval_results = await runner.aevaluate_queries(
vector_index.as_query_engine(llm=llm), queries=qas.questions
)
# If we had ground-truth answers, we could also include the correctness evaluator like below.
# The correctness evaluator depends on additional kwargs, which are passed in as a dictionary.
# Each question is mapped to a set of kwargs
#
# runner = BatchEvalRunner(
# {"correctness": correctness_gpt4},
# workers=8,
# )
# eval_results = await runner.aevaluate_queries(
# vector_index.as_query_engine(),
# queries=qas.queries,
# reference=[qr[1] for qr in qas.qr_pairs],
# )
In [ ]:
Copied!
print(len([qr for qr in qas.qr_pairs]))
print(len([qr for qr in qas.qr_pairs]))
3
Inspecting Outputs¶
In [ ]:
Copied!
print(eval_results.keys())
print(eval_results["correctness"][0].dict().keys())
print(eval_results["correctness"][0].passing)
print(eval_results["correctness"][0].response)
print(eval_results["correctness"][0].contexts)
print(eval_results.keys())
print(eval_results["correctness"][0].dict().keys())
print(eval_results["correctness"][0].passing)
print(eval_results["correctness"][0].response)
print(eval_results["correctness"][0].contexts)
dict_keys(['correctness']) dict_keys(['query', 'contexts', 'response', 'passing', 'feedback', 'score', 'pairwise_source']) False The context information does not provide any information related to the query. Therefore, I cannot provide an answer based on the given context. None
Reporting Total Scores¶
In [ ]:
Copied!
def get_eval_results(key, eval_results):
results = eval_results[key]
correct = 0
for result in results:
if result.passing:
correct += 1
score = correct / len(results)
print(f"{key} Score: {score}")
return score
def get_eval_results(key, eval_results):
results = eval_results[key]
correct = 0
for result in results:
if result.passing:
correct += 1
score = correct / len(results)
print(f"{key} Score: {score}")
return score
In [ ]:
Copied!
score = get_eval_results("correctness", eval_results)
score = get_eval_results("correctness", eval_results)
correctness Score: 0.0
In [ ]:
Copied!
score = get_eval_results("relevancy", eval_results)
score = get_eval_results("relevancy", eval_results)
relevancy Score: 0.96