Nomic Embedding¶
Nomic has released v1.5 🪆🪆🪆 is capable of variable sized embeddings with matryoshka learning and an 8192 context, embedding dimensions between 64 and 768.
In this notebook, we will explore using Nomic v1.5 embedding at different dimensions.
Installation¶
In [ ]:
Copied!
%pip install -U llama-index llama-index-embeddings-nomic
%pip install -U llama-index llama-index-embeddings-nomic
Setup API Keys¶
In [ ]:
Copied!
nomic_api_key = "<NOMIC API KEY>"
nomic_api_key = ""
In [ ]:
Copied!
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.nomic import NomicEmbedding
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.nomic import NomicEmbedding
With dimension at 128¶
In [ ]:
Copied!
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
In [ ]:
Copied!
print(len(embedding))
print(len(embedding))
128
In [ ]:
Copied!
embedding[:5]
embedding[:5]
Out[ ]:
[0.05569458, 0.057922363, -0.30126953, -0.09832764, 0.05947876]
With dimension at 256¶
In [ ]:
Copied!
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=256,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=256,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
In [ ]:
Copied!
print(len(embedding))
print(len(embedding))
256
In [ ]:
Copied!
embedding[:5]
embedding[:5]
Out[ ]:
[0.044708252, 0.04650879, -0.24182129, -0.07897949, 0.04776001]
With dimension at 768¶
In [ ]:
Copied!
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=768,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=768,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
In [ ]:
Copied!
print(len(embedding))
print(len(embedding))
768
In [ ]:
Copied!
embedding[:5]
embedding[:5]
Out[ ]:
[0.027282715, 0.028381348, -0.14758301, -0.048187256, 0.029144287]
You can still use v1 Nomic Embeddings¶
It has 768 fixed embedding dimensions
In [ ]:
Copied!
embed_model = NomicEmbedding(
api_key=nomic_api_key, model_name="nomic-embed-text-v1"
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
embed_model = NomicEmbedding(
api_key=nomic_api_key, model_name="nomic-embed-text-v1"
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
In [ ]:
Copied!
print(len(embedding))
print(len(embedding))
768
In [ ]:
Copied!
embedding[:5]
embedding[:5]
Out[ ]:
[0.0059013367, 0.03744507, 0.0035305023, -0.047180176, 0.0154418945]
Let's Build end to end RAG pipeline with Nomic v1.5 Embedding.¶
We will use OpenAI for Generation step.
Set Embedding model and llm.¶
In [ ]:
Copied!
from llama_index.core import settings
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "<YOUR OPENAI API KEY>"
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
llm = OpenAI(model="gpt-3.5-turbo")
settings.llm = llm
settings.embed_model = embed_model
from llama_index.core import settings
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
import os
os.environ["OPENAI_API_KEY"] = ""
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
llm = OpenAI(model="gpt-3.5-turbo")
settings.llm = llm
settings.embed_model = embed_model
Download Data¶
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
--2024-02-16 18:37:03-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 2606:50c0:8001::154, 2606:50c0:8003::154, 2606:50c0:8000::154, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|2606:50c0:8001::154|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 75042 (73K) [text/plain] Saving to: 'data/paul_graham/paul_graham_essay.txt' data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.02s 2024-02-16 18:37:03 (3.87 MB/s) - 'data/paul_graham/paul_graham_essay.txt' saved [75042/75042]
Load data¶
In [ ]:
Copied!
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
Index creation¶
In [ ]:
Copied!
index = VectorStoreIndex.from_documents(documents)
index = VectorStoreIndex.from_documents(documents)
Query Engine¶
In [ ]:
Copied!
query_engine = index.as_query_engine()
query_engine = index.as_query_engine()
In [ ]:
Copied!
response = query_engine.query("what did author do growing up?")
print(response)
response = query_engine.query("what did author do growing up?")
print(response)
The author, growing up, worked on writing and programming. They wrote short stories and also tried writing programs on an IBM 1401 computer. Later, they got a microcomputer and started programming more extensively, writing simple games and a word processor.