Dashscope embeddings
In [ ]:
Copied!
# DashScope Embeddings
# DashScope Embeddings
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
In [ ]:
Copied!
%pip install llama-index-core
%pip install llama-index-embeddings-dashscope
%pip install llama-index-core
%pip install llama-index-embeddings-dashscope
In [ ]:
Copied!
# Set API key
%env DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
# you can set API key parameter DashScopeTextEmbedding(model=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2, api_key=api_key)
# Set API key
%env DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
# you can set API key parameter DashScopeTextEmbedding(model=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2, api_key=api_key)
In [ ]:
Copied!
# imports
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
# Create embeddings
# text_type=`document` to build index
embedder = DashScopeEmbedding(
model_name=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_DOCUMENT,
)
text_to_embedding = ["风急天高猿啸哀", "渚清沙白鸟飞回", "无边落木萧萧下", "不尽长江滚滚来"]
# Call text Embedding
result_embeddings = embedder.get_text_embedding_batch(text_to_embedding)
# requests and embedding result index is correspond to.
for index, embedding in enumerate(result_embeddings):
if (
embedding is None
): # if the the correspondence request is embedding failed.
print("The %s embedding failed." % text_to_embedding[index])
else:
print("Dimension of embeddings: %s" % len(embedding))
print(
"Input: %s, embedding is: %s"
% (text_to_embedding[index], embedding[:5])
)
# imports
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
# Create embeddings
# text_type=`document` to build index
embedder = DashScopeEmbedding(
model_name=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_DOCUMENT,
)
text_to_embedding = ["风急天高猿啸哀", "渚清沙白鸟飞回", "无边落木萧萧下", "不尽长江滚滚来"]
# Call text Embedding
result_embeddings = embedder.get_text_embedding_batch(text_to_embedding)
# requests and embedding result index is correspond to.
for index, embedding in enumerate(result_embeddings):
if (
embedding is None
): # if the the correspondence request is embedding failed.
print("The %s embedding failed." % text_to_embedding[index])
else:
print("Dimension of embeddings: %s" % len(embedding))
print(
"Input: %s, embedding is: %s"
% (text_to_embedding[index], embedding[:5])
)
Dimension of embeddings: 1536 Input: 风急天高猿啸哀, embedding is: [-0.0016666285653348784, 0.008690492014557004, 0.02894828715284365, -0.01774133615134858, 0.03627544697161321] Dimension of embeddings: 1536 Input: 渚清沙白鸟飞回, embedding is: [0.018255604113922633, 0.030631669725945727, 0.0031333343045102462, 0.014323813963475412, 0.009666154862176396] Dimension of embeddings: 1536 Input: 无边落木萧萧下, embedding is: [-0.01270165436681136, 0.011355212676752505, -0.007090375205285297, 0.008317427977013809, 0.0341982923839579] Dimension of embeddings: 1536 Input: 不尽长江滚滚来, embedding is: [0.003449439128962428, 0.02667092110022496, -0.0010223853088419568, -0.00971414215183749, 0.0035561228133633277]
In [ ]:
Copied!
# imports
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
# Create embeddings
# text_type=`query` to retrive relevant context.
embedder = DashScopeEmbedding(
model_name=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_QUERY,
)
# Call text Embedding
embedding = embedder.get_text_embedding("衣服的质量杠杠的,很漂亮,不枉我等了这么久啊,喜欢,以后还来这里买")
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
# imports
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
# Create embeddings
# text_type=`query` to retrive relevant context.
embedder = DashScopeEmbedding(
model_name=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_QUERY,
)
# Call text Embedding
embedding = embedder.get_text_embedding("衣服的质量杠杠的,很漂亮,不枉我等了这么久啊,喜欢,以后还来这里买")
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
Dimension of embeddings: 1536 [-0.00838587212517078, 0.01004877272531103, 0.0015754734226650637, -0.04273583173235969, -0.05209946086276315]
In [ ]:
Copied!
# call batch text embedding
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeBatchTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
embedder = DashScopeEmbedding(
model_name=DashScopeBatchTextEmbeddingModels.TEXT_EMBEDDING_ASYNC_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_DOCUMENT,
)
embedding_result_file_url = embedder.get_batch_text_embedding(
embedding_file_url="https://dashscope.oss-cn-beijing.aliyuncs.com/samples/text/text-embedding-test.txt"
)
print(embedding_result_file_url)
# call batch text embedding
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeBatchTextEmbeddingModels,
DashScopeTextEmbeddingType,
)
embedder = DashScopeEmbedding(
model_name=DashScopeBatchTextEmbeddingModels.TEXT_EMBEDDING_ASYNC_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_DOCUMENT,
)
embedding_result_file_url = embedder.get_batch_text_embedding(
embedding_file_url="https://dashscope.oss-cn-beijing.aliyuncs.com/samples/text/text-embedding-test.txt"
)
print(embedding_result_file_url)
https://dashscope-result-bj.oss-cn-beijing.aliyuncs.com/5fc5c860/2024-01-29/644ccedb-0b14-481c-a975-16bb5249282d_output_1706517940902.txt.gz?Expires=1706777144&OSSAccessKeyId=LTAI5tQZd8AEcZX6KZV4G8qL&Signature=g%2B0qcmOSwxEj8Cb2zXlvBbA6Fas%3D
In [ ]:
Copied!
# call multimodal embedding service
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeMultiModalEmbeddingModels,
)
embedder = DashScopeEmbedding(
model_name=DashScopeMultiModalEmbeddingModels.MULTIMODAL_EMBEDDING_ONE_PEACE_V1,
)
embedding = embedder.get_image_embedding(
img_file_path="https://dashscope.oss-cn-beijing.aliyuncs.com/images/256_1.png"
)
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
# call multimodal embedding service
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeMultiModalEmbeddingModels,
)
embedder = DashScopeEmbedding(
model_name=DashScopeMultiModalEmbeddingModels.MULTIMODAL_EMBEDDING_ONE_PEACE_V1,
)
embedding = embedder.get_image_embedding(
img_file_path="https://dashscope.oss-cn-beijing.aliyuncs.com/images/256_1.png"
)
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
Dimension of embeddings: 1536 [-0.03515625, 0.05035400390625, 0.008087158203125, 0.0163116455078125, 0.01064300537109375]
In [ ]:
Copied!
# call multimodal embedding service
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeMultiModalEmbeddingModels,
)
embedder = DashScopeEmbedding(
model_name=DashScopeMultiModalEmbeddingModels.MULTIMODAL_EMBEDDING_ONE_PEACE_V1,
)
input = [
{"factor": 1, "text": "你好"},
{
"factor": 2,
"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/cow.flac",
},
{
"factor": 3,
"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/256_1.png",
},
]
embedding = embedder.get_multimodal_embedding(input=input)
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
# call multimodal embedding service
from llama_index.embeddings.dashscope import (
DashScopeEmbedding,
DashScopeMultiModalEmbeddingModels,
)
embedder = DashScopeEmbedding(
model_name=DashScopeMultiModalEmbeddingModels.MULTIMODAL_EMBEDDING_ONE_PEACE_V1,
)
input = [
{"factor": 1, "text": "你好"},
{
"factor": 2,
"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/cow.flac",
},
{
"factor": 3,
"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/256_1.png",
},
]
embedding = embedder.get_multimodal_embedding(input=input)
print(f"Dimension of embeddings: {len(embedding)}")
print(embedding[:5])
Dimension of embeddings: 1536 [-0.0200169887393713, 0.041749317198991776, 0.01004155445843935, 0.03983306884765625, -0.006652673240751028]