Skip to content

Weaviate

WeaviateVectorStore #

Bases: BasePydanticVectorStore

Weaviate vector store.

In this vector store, embeddings and docs are stored within a Weaviate collection.

During query time, the index uses Weaviate to query for the top k most similar nodes.

Parameters:

Name Type Description Default
weaviate_client Client

WeaviateClient instance from weaviate-client package

None
index_name Optional[str]

name for Weaviate classes

None

Examples:

pip install llama-index-vector-stores-weaviate

import weaviate

resource_owner_config = weaviate.AuthClientPassword(
    username="<username>",
    password="<password>",
)
client = weaviate.Client(
    "https://llama-test-ezjahb4m.weaviate.network",
    auth_client_secret=resource_owner_config,
)

vector_store = WeaviateVectorStore(
    weaviate_client=client, index_name="LlamaIndex"
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-weaviate/llama_index/vector_stores/weaviate/base.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
class WeaviateVectorStore(BasePydanticVectorStore):
    """Weaviate vector store.

    In this vector store, embeddings and docs are stored within a
    Weaviate collection.

    During query time, the index uses Weaviate to query for the top
    k most similar nodes.

    Args:
        weaviate_client (weaviate.Client): WeaviateClient
            instance from `weaviate-client` package
        index_name (Optional[str]): name for Weaviate classes

    Examples:
        `pip install llama-index-vector-stores-weaviate`

        ```python
        import weaviate

        resource_owner_config = weaviate.AuthClientPassword(
            username="<username>",
            password="<password>",
        )
        client = weaviate.Client(
            "https://llama-test-ezjahb4m.weaviate.network",
            auth_client_secret=resource_owner_config,
        )

        vector_store = WeaviateVectorStore(
            weaviate_client=client, index_name="LlamaIndex"
        )
        ```
    """

    stores_text: bool = True

    index_name: str
    url: Optional[str]
    text_key: str
    auth_config: Dict[str, Any] = Field(default_factory=dict)
    client_kwargs: Dict[str, Any] = Field(default_factory=dict)

    _client = PrivateAttr()

    def __init__(
        self,
        weaviate_client: Optional[Any] = None,
        class_prefix: Optional[str] = None,
        index_name: Optional[str] = None,
        text_key: str = DEFAULT_TEXT_KEY,
        auth_config: Optional[Any] = None,
        client_kwargs: Optional[Dict[str, Any]] = None,
        url: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if weaviate_client is None:
            if isinstance(auth_config, dict):
                auth_config = AuthApiKey(**auth_config)

            client_kwargs = client_kwargs or {}
            self._client = Client(
                url=url, auth_client_secret=auth_config, **client_kwargs
            )
        else:
            self._client = cast(Client, weaviate_client)

        # validate class prefix starts with a capital letter
        if class_prefix is not None:
            logger.warning("class_prefix is deprecated, please use index_name")
            # legacy, kept for backward compatibility
            index_name = f"{class_prefix}_Node"

        index_name = index_name or f"LlamaIndex_{uuid4().hex}"
        if not index_name[0].isupper():
            raise ValueError(
                "Index name must start with a capital letter, e.g. 'LlamaIndex'"
            )

        # create default schema if does not exist
        if not class_schema_exists(self._client, index_name):
            create_default_schema(self._client, index_name)

        super().__init__(
            url=url,
            index_name=index_name,
            text_key=text_key,
            auth_config=auth_config.__dict__ if auth_config else {},
            client_kwargs=client_kwargs or {},
        )

    @classmethod
    def from_params(
        cls,
        url: str,
        auth_config: Any,
        index_name: Optional[str] = None,
        text_key: str = DEFAULT_TEXT_KEY,
        client_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> "WeaviateVectorStore":
        """Create WeaviateVectorStore from config."""
        client_kwargs = client_kwargs or {}
        weaviate_client = Client(
            url=url, auth_client_secret=auth_config, **client_kwargs
        )
        return cls(
            weaviate_client=weaviate_client,
            url=url,
            auth_config=auth_config.__dict__,
            client_kwargs=client_kwargs,
            index_name=index_name,
            text_key=text_key,
            **kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "WeaviateVectorStore"

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings

        """
        ids = [r.node_id for r in nodes]

        with self._client.batch as batch:
            for node in nodes:
                add_node(
                    self._client,
                    node,
                    self.index_name,
                    batch=batch,
                    text_key=self.text_key,
                )
        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        where_filter = {
            "path": ["ref_doc_id"],
            "operator": "Equal",
            "valueText": ref_doc_id,
        }
        if "filter" in delete_kwargs and delete_kwargs["filter"] is not None:
            where_filter = {
                "operator": "And",
                "operands": [where_filter, delete_kwargs["filter"]],  # type: ignore
            }

        query = (
            self._client.query.get(self.index_name)
            .with_additional(["id"])
            .with_where(where_filter)
            .with_limit(10000)  # 10,000 is the max weaviate can fetch
        )

        query_result = query.do()
        parsed_result = parse_get_response(query_result)
        entries = parsed_result[self.index_name]
        for entry in entries:
            self._client.data_object.delete(entry["_additional"]["id"], self.index_name)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes."""
        all_properties = get_all_properties(self._client, self.index_name)

        # build query
        query_builder = self._client.query.get(self.index_name, all_properties)

        # list of documents to constrain search
        if query.doc_ids:
            filter_with_doc_ids = {
                "operator": "Or",
                "operands": [
                    {"path": ["doc_id"], "operator": "Equal", "valueText": doc_id}
                    for doc_id in query.doc_ids
                ],
            }
            query_builder = query_builder.with_where(filter_with_doc_ids)

        if query.node_ids:
            filter_with_node_ids = {
                "operator": "Or",
                "operands": [
                    {"path": ["id"], "operator": "Equal", "valueText": node_id}
                    for node_id in query.node_ids
                ],
            }
            query_builder = query_builder.with_where(filter_with_node_ids)

        query_builder = query_builder.with_additional(
            ["id", "vector", "distance", "score"]
        )

        vector = query.query_embedding
        similarity_key = "distance"
        if query.mode == VectorStoreQueryMode.DEFAULT:
            logger.debug("Using vector search")
            if vector is not None:
                query_builder = query_builder.with_near_vector(
                    {
                        "vector": vector,
                    }
                )
        elif query.mode == VectorStoreQueryMode.HYBRID:
            logger.debug(f"Using hybrid search with alpha {query.alpha}")
            similarity_key = "score"
            if vector is not None and query.query_str:
                query_builder = query_builder.with_hybrid(
                    query=query.query_str,
                    alpha=query.alpha,
                    vector=vector,
                )

        if query.filters is not None:
            filter = _to_weaviate_filter(query.filters)
            query_builder = query_builder.with_where(filter)
        elif "filter" in kwargs and kwargs["filter"] is not None:
            query_builder = query_builder.with_where(kwargs["filter"])

        query_builder = query_builder.with_limit(query.similarity_top_k)
        logger.debug(f"Using limit of {query.similarity_top_k}")

        # execute query
        query_result = query_builder.do()

        # parse results
        parsed_result = parse_get_response(query_result)
        entries = parsed_result[self.index_name]

        similarities = []
        nodes: List[BaseNode] = []
        node_ids = []

        for i, entry in enumerate(entries):
            if i < query.similarity_top_k:
                similarities.append(get_node_similarity(entry, similarity_key))
                nodes.append(to_node(entry, text_key=self.text_key))
                node_ids.append(nodes[-1].node_id)
            else:
                break

        return VectorStoreQueryResult(
            nodes=nodes, ids=node_ids, similarities=similarities
        )

client property #

client: Any

Get client.

from_params classmethod #

from_params(url: str, auth_config: Any, index_name: Optional[str] = None, text_key: str = DEFAULT_TEXT_KEY, client_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Any) -> WeaviateVectorStore

Create WeaviateVectorStore from config.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-weaviate/llama_index/vector_stores/weaviate/base.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@classmethod
def from_params(
    cls,
    url: str,
    auth_config: Any,
    index_name: Optional[str] = None,
    text_key: str = DEFAULT_TEXT_KEY,
    client_kwargs: Optional[Dict[str, Any]] = None,
    **kwargs: Any,
) -> "WeaviateVectorStore":
    """Create WeaviateVectorStore from config."""
    client_kwargs = client_kwargs or {}
    weaviate_client = Client(
        url=url, auth_client_secret=auth_config, **client_kwargs
    )
    return cls(
        weaviate_client=weaviate_client,
        url=url,
        auth_config=auth_config.__dict__,
        client_kwargs=client_kwargs,
        index_name=index_name,
        text_key=text_key,
        **kwargs,
    )

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-weaviate/llama_index/vector_stores/weaviate/base.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings

    """
    ids = [r.node_id for r in nodes]

    with self._client.batch as batch:
        for node in nodes:
            add_node(
                self._client,
                node,
                self.index_name,
                batch=batch,
                text_key=self.text_key,
            )
    return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-weaviate/llama_index/vector_stores/weaviate/base.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    where_filter = {
        "path": ["ref_doc_id"],
        "operator": "Equal",
        "valueText": ref_doc_id,
    }
    if "filter" in delete_kwargs and delete_kwargs["filter"] is not None:
        where_filter = {
            "operator": "And",
            "operands": [where_filter, delete_kwargs["filter"]],  # type: ignore
        }

    query = (
        self._client.query.get(self.index_name)
        .with_additional(["id"])
        .with_where(where_filter)
        .with_limit(10000)  # 10,000 is the max weaviate can fetch
    )

    query_result = query.do()
    parsed_result = parse_get_response(query_result)
    entries = parsed_result[self.index_name]
    for entry in entries:
        self._client.data_object.delete(entry["_additional"]["id"], self.index_name)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-weaviate/llama_index/vector_stores/weaviate/base.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """Query index for top k most similar nodes."""
    all_properties = get_all_properties(self._client, self.index_name)

    # build query
    query_builder = self._client.query.get(self.index_name, all_properties)

    # list of documents to constrain search
    if query.doc_ids:
        filter_with_doc_ids = {
            "operator": "Or",
            "operands": [
                {"path": ["doc_id"], "operator": "Equal", "valueText": doc_id}
                for doc_id in query.doc_ids
            ],
        }
        query_builder = query_builder.with_where(filter_with_doc_ids)

    if query.node_ids:
        filter_with_node_ids = {
            "operator": "Or",
            "operands": [
                {"path": ["id"], "operator": "Equal", "valueText": node_id}
                for node_id in query.node_ids
            ],
        }
        query_builder = query_builder.with_where(filter_with_node_ids)

    query_builder = query_builder.with_additional(
        ["id", "vector", "distance", "score"]
    )

    vector = query.query_embedding
    similarity_key = "distance"
    if query.mode == VectorStoreQueryMode.DEFAULT:
        logger.debug("Using vector search")
        if vector is not None:
            query_builder = query_builder.with_near_vector(
                {
                    "vector": vector,
                }
            )
    elif query.mode == VectorStoreQueryMode.HYBRID:
        logger.debug(f"Using hybrid search with alpha {query.alpha}")
        similarity_key = "score"
        if vector is not None and query.query_str:
            query_builder = query_builder.with_hybrid(
                query=query.query_str,
                alpha=query.alpha,
                vector=vector,
            )

    if query.filters is not None:
        filter = _to_weaviate_filter(query.filters)
        query_builder = query_builder.with_where(filter)
    elif "filter" in kwargs and kwargs["filter"] is not None:
        query_builder = query_builder.with_where(kwargs["filter"])

    query_builder = query_builder.with_limit(query.similarity_top_k)
    logger.debug(f"Using limit of {query.similarity_top_k}")

    # execute query
    query_result = query_builder.do()

    # parse results
    parsed_result = parse_get_response(query_result)
    entries = parsed_result[self.index_name]

    similarities = []
    nodes: List[BaseNode] = []
    node_ids = []

    for i, entry in enumerate(entries):
        if i < query.similarity_top_k:
            similarities.append(get_node_similarity(entry, similarity_key))
            nodes.append(to_node(entry, text_key=self.text_key))
            node_ids.append(nodes[-1].node_id)
        else:
            break

    return VectorStoreQueryResult(
        nodes=nodes, ids=node_ids, similarities=similarities
    )