Skip to content

Upstash

UpstashVectorStore #

Bases: VectorStore

Upstash Vector Store.

Examples:

pip install llama-index-vector-stores-upstash

from llama_index.vector_stores.upstash import UpstashVectorStore

# Create Upstash vector store
upstash_vector_store = UpstashVectorStore(
    url="your_upstash_vector_url",
    token="your_upstash_vector_token",
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-upstash/llama_index/vector_stores/upstash/base.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
class UpstashVectorStore(VectorStore):
    """Upstash Vector Store.

    Examples:
        `pip install llama-index-vector-stores-upstash`

        ```python
        from llama_index.vector_stores.upstash import UpstashVectorStore

        # Create Upstash vector store
        upstash_vector_store = UpstashVectorStore(
            url="your_upstash_vector_url",
            token="your_upstash_vector_token",
        )
        ```
    """

    stores_text: bool = True
    flat_metadata: bool = False

    @classmethod
    def class_name(cls) -> str:
        return "UpstashVectorStore"

    @property
    def client(self) -> Any:
        """Return the Upstash client."""
        return self._index

    def __init__(
        self, url: str, token: str, batch_size: int = DEFAULT_BATCH_SIZE
    ) -> None:
        """
        Create a UpstashVectorStore. The index can be created using the Upstash console.

        Args:
            url (String): URL of the Upstash Vector instance, found in the Upstash console.
            token (String): Token for the Upstash Vector Index, found in the Upstash console.
            batch_size (Optional[int]): Batch size for adding nodes to the vector store.

        Raises:
            ImportError: If the upstash-vector python package is not installed.
        """
        self.batch_size = batch_size

        try:
            from upstash_vector import Index
        except ImportError:
            raise ImportError(
                "Could not import upstash_vector.Index, Please install it with `pip install upstash-vector`"
            )

        self._index = Index(url=url, token=token)

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """
        Add nodes to the vector store.

        Args:
            nodes: List of nodes to add to the vector store.
            add_kwargs: Additional arguments to pass to the add method.

        Returns:
            List of ids of the added nodes.
        """
        ids = []
        vectors = []
        for node_batch in iter_batch(nodes, self.batch_size):
            for node in node_batch:
                metadata_dict = node_to_metadata_dict(node)
                ids.append(node.node_id)
                vectors.append((node.node_id, node.embedding, metadata_dict))

            self.client.upsert(vectors=vectors)

        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete node from the vector store.

        Args:
            ref_doc_id: Reference doc id of the node to delete.
            delete_kwargs: Additional arguments to pass to the delete method.
        """
        raise NotImplementedError(
            "Delete is not currently supported, but will be in the future."
        )

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Query the vector store.

        Args:
            query: Query to run against the vector store.
            kwargs: Additional arguments to pass to the query method.

        Returns:
            Query result.
        """
        if query.mode != VectorStoreQueryMode.DEFAULT:
            raise ValueError(f"Query mode {query.mode} not supported")

        # if query.filters:
        #     raise ValueError("Metadata filtering not supported")

        res = self.client.query(
            vector=query.query_embedding,
            top_k=query.similarity_top_k,
            include_vectors=True,
            include_metadata=True,
            filter=_to_upstash_filters(query.filters),
        )

        top_k_nodes = []
        top_k_ids = []
        top_k_scores = []
        for vector in res:
            node = metadata_dict_to_node(vector.metadata)
            node.embedding = vector.vector
            top_k_nodes.append(node)
            top_k_ids.append(vector.id)
            top_k_scores.append(vector.score)

        return VectorStoreQueryResult(
            nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
        )

client property #

client: Any

Return the Upstash client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to the vector store.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes to add to the vector store.

required
add_kwargs Any

Additional arguments to pass to the add method.

{}

Returns:

Type Description
List[str]

List of ids of the added nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-upstash/llama_index/vector_stores/upstash/base.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """
    Add nodes to the vector store.

    Args:
        nodes: List of nodes to add to the vector store.
        add_kwargs: Additional arguments to pass to the add method.

    Returns:
        List of ids of the added nodes.
    """
    ids = []
    vectors = []
    for node_batch in iter_batch(nodes, self.batch_size):
        for node in node_batch:
            metadata_dict = node_to_metadata_dict(node)
            ids.append(node.node_id)
            vectors.append((node.node_id, node.embedding, metadata_dict))

        self.client.upsert(vectors=vectors)

    return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete node from the vector store.

Parameters:

Name Type Description Default
ref_doc_id str

Reference doc id of the node to delete.

required
delete_kwargs Any

Additional arguments to pass to the delete method.

{}
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-upstash/llama_index/vector_stores/upstash/base.py
166
167
168
169
170
171
172
173
174
175
176
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete node from the vector store.

    Args:
        ref_doc_id: Reference doc id of the node to delete.
        delete_kwargs: Additional arguments to pass to the delete method.
    """
    raise NotImplementedError(
        "Delete is not currently supported, but will be in the future."
    )

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query the vector store.

Parameters:

Name Type Description Default
query VectorStoreQuery

Query to run against the vector store.

required
kwargs Any

Additional arguments to pass to the query method.

{}

Returns:

Type Description
VectorStoreQueryResult

Query result.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-upstash/llama_index/vector_stores/upstash/base.py
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Query the vector store.

    Args:
        query: Query to run against the vector store.
        kwargs: Additional arguments to pass to the query method.

    Returns:
        Query result.
    """
    if query.mode != VectorStoreQueryMode.DEFAULT:
        raise ValueError(f"Query mode {query.mode} not supported")

    # if query.filters:
    #     raise ValueError("Metadata filtering not supported")

    res = self.client.query(
        vector=query.query_embedding,
        top_k=query.similarity_top_k,
        include_vectors=True,
        include_metadata=True,
        filter=_to_upstash_filters(query.filters),
    )

    top_k_nodes = []
    top_k_ids = []
    top_k_scores = []
    for vector in res:
        node = metadata_dict_to_node(vector.metadata)
        node.embedding = vector.vector
        top_k_nodes.append(node)
        top_k_ids.append(vector.id)
        top_k_scores.append(vector.score)

    return VectorStoreQueryResult(
        nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
    )