29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272 | class TimescaleVectorStore(VectorStore):
"""Timescale vector store.
Examples:
`pip install llama-index-vector-stores-timescalevector`
```python
from llama_index.vector_stores.timescalevector import TimescaleVectorStore
# Set up the Timescale service URL
TIMESCALE_SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require"
# Create a TimescaleVectorStore instance
vector_store = TimescaleVectorStore.from_params(
service_url=TIMESCALE_SERVICE_URL,
table_name="your_table_name_here",
num_dimensions=1536,
)
```
"""
stores_text = True
flat_metadata = False
def __init__(
self,
service_url: str,
table_name: str,
num_dimensions: int = DEFAULT_EMBEDDING_DIM,
time_partition_interval: Optional[timedelta] = None,
) -> None:
self.service_url = service_url
self.table_name: str = table_name.lower()
self.num_dimensions = num_dimensions
self.time_partition_interval = time_partition_interval
self._create_clients()
self._create_tables()
async def close(self) -> None:
self._sync_client.close()
await self._async_client.close()
@classmethod
def from_params(
cls,
service_url: str,
table_name: str,
num_dimensions: int = DEFAULT_EMBEDDING_DIM,
time_partition_interval: Optional[timedelta] = None,
) -> "TimescaleVectorStore":
return cls(
service_url=service_url,
table_name=table_name,
num_dimensions=num_dimensions,
time_partition_interval=time_partition_interval,
)
def _create_clients(self) -> None:
# in the normal case doesn't restrict the id type to even uuid.
# Allow arbitrary text
id_type = "TEXT"
if self.time_partition_interval is not None:
# for time partitioned tables, the id type must be UUID v1
id_type = "UUID"
self._sync_client = client.Sync(
self.service_url,
self.table_name,
self.num_dimensions,
id_type=id_type,
time_partition_interval=self.time_partition_interval,
)
self._async_client = client.Async(
self.service_url,
self.table_name,
self.num_dimensions,
id_type=id_type,
time_partition_interval=self.time_partition_interval,
)
def _create_tables(self) -> None:
self._sync_client.create_tables()
def _node_to_row(self, node: BaseNode) -> Any:
metadata = node_to_metadata_dict(
node,
remove_text=True,
flat_metadata=self.flat_metadata,
)
# reuse the node id in the common case
id = node.node_id
if self.time_partition_interval is not None:
# for time partitioned tables, the id must be a UUID v1,
# so generate one if it's not already set
try:
# Attempt to parse the UUID from the string
parsed_uuid = uuid.UUID(id)
if parsed_uuid.version != 1:
id = str(uuid.uuid1())
except ValueError:
id = str(uuid.uuid1())
return [
id,
metadata,
node.get_content(metadata_mode=MetadataMode.NONE),
node.embedding,
]
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
rows_to_insert = [self._node_to_row(node) for node in nodes]
ids = [result[0] for result in rows_to_insert]
self._sync_client.upsert(rows_to_insert)
return ids
async def async_add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
rows_to_insert = [self._node_to_row(node) for node in nodes]
ids = [result.node_id for result in nodes]
await self._async_client.upsert(rows_to_insert)
return ids
def _filter_to_dict(
self, metadata_filters: Optional[MetadataFilters]
) -> Optional[Dict[str, str]]:
if metadata_filters is None or len(metadata_filters.legacy_filters()) <= 0:
return None
res = {}
for filter in metadata_filters.legacy_filters():
res[filter.key] = filter.value
return res
def _db_rows_to_query_result(self, rows: List) -> VectorStoreQueryResult:
nodes = []
similarities = []
ids = []
for row in rows:
try:
node = metadata_dict_to_node(row[client.SEARCH_RESULT_METADATA_IDX])
node.set_content(str(row[client.SEARCH_RESULT_CONTENTS_IDX]))
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
node = TextNode(
id_=row[client.SEARCH_RESULT_ID_IDX],
text=row[client.SEARCH_RESULT_CONTENTS_IDX],
metadata=row[client.SEARCH_RESULT_METADATA_IDX],
)
similarities.append(row[client.SEARCH_RESULT_DISTANCE_IDX])
ids.append(row[client.SEARCH_RESULT_ID_IDX])
nodes.append(node)
return VectorStoreQueryResult(
nodes=nodes,
similarities=similarities,
ids=ids,
)
def date_to_range_filter(self, **kwargs: Any) -> Any:
constructor_args = {
key: kwargs[key]
for key in [
"start_date",
"end_date",
"time_delta",
"start_inclusive",
"end_inclusive",
]
if key in kwargs
}
if not constructor_args or len(constructor_args) == 0:
return None
return client.UUIDTimeRange(**constructor_args)
def _query_with_score(
self,
embedding: Optional[List[float]],
limit: int = 10,
metadata_filters: Optional[MetadataFilters] = None,
**kwargs: Any,
) -> VectorStoreQueryResult:
filter = self._filter_to_dict(metadata_filters)
res = self._sync_client.search(
embedding,
limit,
filter,
uuid_time_filter=self.date_to_range_filter(**kwargs),
)
return self._db_rows_to_query_result(res)
async def _aquery_with_score(
self,
embedding: Optional[List[float]],
limit: int = 10,
metadata_filters: Optional[MetadataFilters] = None,
**kwargs: Any,
) -> VectorStoreQueryResult:
filter = self._filter_to_dict(metadata_filters)
res = await self._async_client.search(
embedding,
limit,
filter,
uuid_time_filter=self.date_to_range_filter(**kwargs),
)
return self._db_rows_to_query_result(res)
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
return self._query_with_score(
query.query_embedding, query.similarity_top_k, query.filters, **kwargs
)
async def aquery(
self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
return await self._aquery_with_score(
query.query_embedding,
query.similarity_top_k,
query.filters,
**kwargs,
)
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
filter: Dict[str, str] = {"doc_id": ref_doc_id}
self._sync_client.delete_by_metadata(filter)
DEFAULT_INDEX_TYPE = IndexType.TIMESCALE_VECTOR
def create_index(
self, index_type: IndexType = DEFAULT_INDEX_TYPE, **kwargs: Any
) -> None:
if index_type == IndexType.PGVECTOR_IVFFLAT:
self._sync_client.create_embedding_index(client.IvfflatIndex(**kwargs))
if index_type == IndexType.PGVECTOR_HNSW:
self._sync_client.create_embedding_index(client.HNSWIndex(**kwargs))
if index_type == IndexType.TIMESCALE_VECTOR:
self._sync_client.create_embedding_index(
client.TimescaleVectorIndex(**kwargs)
)
def drop_index(self) -> None:
self._sync_client.drop_embedding_index()
|